-
Notifications
You must be signed in to change notification settings - Fork 29
/
featurize.py
317 lines (241 loc) · 10.4 KB
/
featurize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Convert the raw json data into training and validation examples.
"""
from collections import Counter
from concurrent.futures import ThreadPoolExecutor
import json
import os
import string
import click
import numpy as np
import ciseau
from constants import SOS, EOS, UNK, PAD
from vocab import Vocab
from evaluate import normalize_answer
# Constants
splits = ["train", "dev", "augmented"]
ARTICLES = {"a", "an", "the", "of"}
# Augmented data
CUTOFF = 87599
# Keep the random embedding matrix the same between runs.
np.random.seed(1234)
def data_stream(path):
""" Given a path json data in Pranav format, convert it to a stream
question/context/answers tuple."""
with open(path, "rt") as handle:
raw_data = json.load(handle)["data"]
for ex in raw_data:
for paragraph in ex["paragraphs"]:
context = paragraph["context"]
for qa in paragraph["qas"]:
question = qa["question"]
answers = qa["answers"]
if "id" not in qa:
qa_id = -1
else:
qa_id = qa["id"]
yield question, context, answers, qa_id
def build_vocabulary(datadir, outdir, glove_path):
"""Construct the vocabulary object used throughout."""
# We're not going to backprop through the word vectors
# both train and dev words end up in the vocab.
counter = Counter()
for split in splits:
if split == "augmented":
continue
datapath = os.path.join(datadir, split + ".json")
for question, context, _, _ in data_stream(datapath):
for word in ciseau.tokenize(question, normalize_ascii=False):
counter[normalize(word)] += 1
for word in ciseau.tokenize(context, normalize_ascii=False):
counter[normalize(word)] += 1
common_words = [UNK, SOS, EOS, PAD] + [w for w, _ in counter.most_common()]
vocab_path = os.path.join(outdir, "vocab.txt")
with open(vocab_path, "wt") as handle:
handle.write("\n".join(common_words))
return Vocab(outdir)
def normalize_answer_tokens(tokens):
start = 0
end = len(tokens)
while end - start > 1:
first_token = tokens[start].rstrip().lower()
if first_token in string.punctuation or first_token in ARTICLES:
start += 1
else:
break
while end - start > 1:
last_token = tokens[end - 1].rstrip().lower()
if last_token in string.punctuation:
end -= 1
else:
break
return start, end
def tokenize_example(question, context, answers, strip_labels=True):
# Q: How should we choose the right answer
answer = answers[0]["text"]
answer_start = answers[0]["answer_start"]
if strip_labels:
answer_tokens = ciseau.tokenize(answer, normalize_ascii=False)
start_offset, end_offset = normalize_answer_tokens(answer_tokens)
answer = "".join(answer_tokens[start_offset:end_offset])
# add back the piece that was stripped off:
answer_start = answer_start + len("".join(answer_tokens[:start_offset]))
# replace answer string with placeholder
placeholder = "XXXX"
new_context = context[:answer_start] + placeholder + context[answer_start + len(answer):]
token_context = ciseau.sent_tokenize(new_context, keep_whitespace=True)
token_question = ciseau.tokenize(question)
sentence_label = None
for sent_idx, sent in enumerate(token_context):
answer_start = None
for idx, word in enumerate(sent):
if placeholder in word:
answer_start = idx
break
if answer_start is None:
continue
sentence_label = sent_idx
# deal with cases where the answer is in the middle
# of the word
answer = word.replace(placeholder, answer)
token_answer = ciseau.tokenize(answer)
answer_end = answer_start + len(token_answer) - 1
answer_sent = sent[:answer_start] + token_answer + sent[answer_start + 1:]
break
token_context[sentence_label] = answer_sent
return token_question, token_context, sentence_label, answer_start, answer_end
def normalize(word):
return word.strip()
def same_as_question_feature(question_idxs, context_idxs, vocab):
question_words = [vocab.idx_to_word(idx) for idx in question_idxs]
# remove stop word and puncutation
question_words = set([w.strip().lower() for w in question_words if w not in ARTICLES and w not in string.punctuation])
features = []
for word_idx in context_idxs:
word = vocab.idx_to_word(word_idx)
features.append(int(word.strip().lower() in question_words))
return features
def repeated_word_features(context_idxs, vocab):
context_words = [vocab.idx_to_word(idx) for idx in context_idxs]
word_counter = {}
for word in context_words:
canon = word.strip().lower()
if canon in word_counter:
word_counter[canon] += 1
else:
word_counter[canon] = 1
max_occur = max(word_counter.values())
min_occur = min(word_counter.values())
occur_range = max(1.0, max_occur - min_occur)
repeated_words = []
repeated_word_intensity = []
for word in context_words:
canon = word.strip().lower()
count = word_counter[canon]
repeated = float(count > 1 and canon not in ARTICLES and canon not in string.punctuation)
intensity = float((count - min_occur) / occur_range)
repeated_words.append(repeated)
repeated_word_intensity.append(intensity)
return repeated_words, repeated_word_intensity
def convert_example_to_indices(example, outfile, vocab):
print("Processing {}".format(outfile), flush=True)
question, context, answers, qa_id = example
tokenized = tokenize_example(question, context, answers, strip_labels=True)
token_question, token_context, ans_sent, ans_start, ans_end = tokenized
# Convert to indices
question_idxs = [vocab.word_to_idx(normalize(w)) for w in token_question]
# + 1 for end of sentence
sent_lengths = [len(sent) + 1 for sent in token_context]
context_idxs = []
for sent in token_context:
for w in sent:
context_idxs.append(vocab.word_to_idx(normalize(w)))
context_idxs.append(vocab.eos)
same_as_question = same_as_question_feature(question_idxs,
context_idxs, vocab)
repeated_words, repeated_intensity = repeated_word_features(context_idxs, vocab)
features = {
"question": question_idxs,
"context": context_idxs,
"ans_sentence": ans_sent,
"ans_start": ans_start,
"ans_end": ans_end,
"sent_lengths": sent_lengths,
"same_as_question_word": same_as_question,
"repeated_words": repeated_words,
"repeated_intensity": repeated_intensity,
"qa_id": qa_id
}
# Hack!: This is not a great way to save indices...
with open(outfile, "wt") as handle:
json.dump(features, handle)
def featurize_example(question, context, vocab):
# Convert to indices
question_idxs = [vocab.word_to_idx(normalize(w))
for w in ciseau.tokenize(
question, normalize_ascii=False)]
context_sents = ciseau.sent_tokenize(context, keep_whitespace=True,
normalize_ascii=False)
# + 1 for end of sentence
sent_lengths = [len(sent) + 1 for sent in context_sents]
context_idxs = []
for sent in context_sents:
for w in sent:
context_idxs.append(vocab.word_to_idx(normalize(w)))
context_idxs.append(vocab.eos)
same_as_question = same_as_question_feature(question_idxs, context_idxs, vocab)
repeated_words, repeated_intensity = repeated_word_features(context_idxs, vocab)
return (question_idxs, context_idxs, same_as_question, repeated_words,
repeated_intensity, sent_lengths), context_sents
def random_sample(data, k, replace=False):
indices = np.arange(len(data))
chosen_indices = np.random.choice(indices, k, replace=replace)
return [data[idx] for idx in chosen_indices]
@click.command()
@click.option("--datadir", type=str, help="Path to raw data")
@click.option("--outdir", type=str, help="Path to save the result")
@click.option("--glove-path", default="/mnt/data/jmiller/glove.840B.300d.txt")
@click.option("--num-augmented", default=10000 * 30) # Enough for 30 epochs.
def preprocess(datadir, outdir, glove_path, num_augmented):
if not os.path.exists(outdir):
os.makedirs(outdir, exist_ok=True)
print("Constructing vocabularies...")
vocab = build_vocabulary(datadir, outdir, glove_path)
print("Finished...")
print("Building word embedding matrix...", flush=True)
vocab.construct_embedding_matrix(glove_path)
print("Finished...", flush=True)
# Create training featurizations
for split in splits:
results_path = os.path.join(outdir, split)
os.makedirs(results_path, exist_ok=True)
# Spin up a thread pool to process each example
with ThreadPoolExecutor(max_workers=20) as executor:
futures = []
if split == "augmented":
all_examples = list(data_stream(
os.path.join(datadir, "augmented_train.json")))
# Randomly sample augmented data to featurize
examples = random_sample(
all_examples[CUTOFF:], num_augmented)
elif split == "train":
examples = list(data_stream(os.path.join(datadir, "train.json")))
else:
examples = list(data_stream(os.path.join(datadir, split + ".json")))
for idx, example in enumerate(examples):
outfile = os.path.join(results_path, str(idx) + ".json")
futures.append(executor.submit(
convert_example_to_indices,
example, outfile, vocab))
for future in futures:
future.result()
print("Building evaluation featurization...")
eval_feats = []
for question, context, _, qa_id in data_stream(os.path.join(datadir, "dev.json")):
features, tokenized_context = featurize_example(
question, context, vocab)
eval_feats.append((qa_id, tokenized_context, features))
with open(os.path.join(outdir, "eval.json"), "wt") as handle:
json.dump(eval_feats, handle)
if __name__ == "__main__":
preprocess()