-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathdata.py
129 lines (94 loc) · 4.55 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import io
import numpy as np
import tensorflow as tf
import re
import os
from sklearn.model_selection import train_test_split
from constant import *
import pickle
class NMTDataset:
def __init__(self, inp_lang, targ_lang, vocab_folder):
self.inp_lang = inp_lang
self.targ_lang = targ_lang
self.vocab_folder = vocab_folder
self.inp_tokenizer_path = '{}{}_tokenizer.pickle'.format(self.vocab_folder, self.inp_lang)
self.targ_tokenizer_path = '{}{}_tokenizer.pickle'.format(self.vocab_folder, self.targ_lang)
self.inp_tokenizer = None
self.targ_tokenizer = None
if os.path.isfile(self.inp_tokenizer_path):
# Loading tokenizer
with open(self.inp_tokenizer_path, 'rb') as handle:
self.inp_tokenizer = pickle.load(handle)
if os.path.isfile(self.targ_tokenizer_path):
# Loading tokenizer
with open(self.targ_tokenizer_path, 'rb') as handle:
self.targ_tokenizer = pickle.load(handle)
def preprocess_sentence(self, w, max_length):
w = w.lower().strip()
w = re.sub(r"([?.!,¿])", r" \1 ", w)
w = re.sub(r'[" "]+', " ", w)
w = w.strip()
# Truncate Length up to ideal_length
w = " ".join(w.split()[:max_length+1])
# Add start and end token
w = '{} {} {}'.format(BOS, w, EOS)
return w
def build_tokenizer(self, lang_tokenizer, lang):
# TODO: Update document
if not lang_tokenizer:
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='')
lang_tokenizer.fit_on_texts(lang)
return lang_tokenizer
def tokenize(self, lang_tokenizer, lang, max_length):
# TODO: Update document
# Padding
tensor = lang_tokenizer.texts_to_sequences(lang)
tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post', maxlen=max_length)
return tensor
def display_samples(self, num_of_pairs, inp_lines, targ_lines):
# TODO: Update document
pairs = zip(inp_lines[:num_of_pairs], targ_lines[:num_of_pairs])
print('=============Sample Data================')
print('----------------Begin--------------------')
for i, pair in enumerate(pairs):
inp, targ = pair
print('--> Sample {}:'.format(i + 1))
print('Input: ', inp)
print('Target: ', targ)
print('----------------End--------------------')
def load_dataset(self, inp_path, targ_path, max_length, num_examples):
# TODO: Update document
inp_lines = io.open(inp_path, encoding=UTF_8).read().strip().split('\n')[:num_examples]
targ_lines = io.open(targ_path, encoding=UTF_8).read().strip().split('\n')[:num_examples]
inp_lines = [self.preprocess_sentence(inp, max_length) for inp in inp_lines]
targ_lines = [self.preprocess_sentence(targ, max_length) for targ in targ_lines]
# Display 10 pairs
self.display_samples(3, inp_lines, targ_lines)
# Tokenizing
self.inp_tokenizer = self.build_tokenizer(self.inp_tokenizer, inp_lines)
inp_tensor = self.tokenize(self.inp_tokenizer, inp_lines, max_length)
self.targ_tokenizer = self.build_tokenizer(self.targ_tokenizer, targ_lines)
targ_tensor = self.tokenize(self.targ_tokenizer, targ_lines, max_length)
# Saving Tokenizer
print('=============Saving Tokenizer================')
print('Begin...')
if not os.path.exists(self.vocab_folder):
try:
os.makedirs(self.vocab_folder)
except OSError as e:
raise IOError("Failed to create folders")
with open(self.inp_tokenizer_path, 'wb') as handle:
pickle.dump(self.inp_tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open(self.targ_tokenizer_path, 'wb') as handle:
pickle.dump(self.targ_tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL)
print('Done!!!')
return inp_tensor, targ_tensor
def build_dataset(self, inp_path, targ_path, buffer_size, batch_size, max_length, num_examples):
# TODO: Update document
inp_tensor, targ_tensor = self.load_dataset(inp_path, targ_path, max_length, num_examples)
inp_tensor_train, inp_tensor_val, targ_tensor_train, targ_tensor_val = train_test_split(inp_tensor, targ_tensor, test_size=0.2)
train_dataset = tf.data.Dataset.from_tensor_slices((tf.convert_to_tensor(inp_tensor_train, dtype=tf.int64), tf.convert_to_tensor(targ_tensor_train, dtype=tf.int64)))
train_dataset = train_dataset.shuffle(buffer_size).batch(batch_size)
val_dataset = tf.data.Dataset.from_tensor_slices((tf.convert_to_tensor(inp_tensor_val, dtype=tf.int64), tf.convert_to_tensor(targ_tensor_val, dtype=tf.int64)))
val_dataset = val_dataset.shuffle(buffer_size).batch(batch_size)
return train_dataset, val_dataset