forked from CompVis/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 474
/
Copy pathinpaint_gradio.py
328 lines (279 loc) · 10.9 KB
/
inpaint_gradio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import argparse
import os
import re
import time
from contextlib import nullcontext
from itertools import islice
from random import randint
import gradio as gr
import numpy as np
import torch
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
from pytorch_lightning import seed_everything
from torch import autocast
from torchvision.utils import make_grid
from tqdm import tqdm, trange
from transformers import logging
from ldm.util import instantiate_from_config
from optimUtils import split_weighted_subprompts, logger
logging.set_verbosity_error()
import mimetypes
mimetypes.init()
mimetypes.add_type("application/javascript", ".js")
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
def load_img(image, h0, w0):
image = image.convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h})")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New image size ({w}, {h})")
image = image.resize((w, h), resample=Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.0 * image - 1.0
def load_mask(mask, h0, w0, newH, newW, invert=False):
image = mask.convert("RGB")
w, h = image.size
print(f"loaded input mask of size ({w}, {h})")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 32
print(f"New mask size ({w}, {h})")
image = image.resize((newW, newH), resample=Image.LANCZOS)
# image = image.resize((64, 64), resample=Image.LANCZOS)
image = np.array(image)
if invert:
print("inverted")
where_0, where_1 = np.where(image == 0), np.where(image == 255)
image[where_0], image[where_1] = 255, 0
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def generate(
image,
mask_image,
prompt,
strength,
ddim_steps,
n_iter,
batch_size,
Height,
Width,
scale,
ddim_eta,
unet_bs,
device,
seed,
outdir,
img_format,
turbo,
full_precision,
):
if seed == "":
seed = randint(0, 1000000)
seed = int(seed)
seed_everything(seed)
sampler = "ddim"
# Logging
logger(locals(), log_csv="logs/inpaint_gradio_logs.csv")
init_image = load_img(image['image'], Height, Width).to(device)
model.unet_bs = unet_bs
model.turbo = turbo
model.cdevice = device
modelCS.cond_stage_model.device = device
if device != "cpu" and full_precision == False:
model.half()
modelCS.half()
modelFS.half()
init_image = init_image.half()
# mask.half()
tic = time.time()
os.makedirs(outdir, exist_ok=True)
outpath = outdir
sample_path = os.path.join(outpath, "_".join(re.split(":| ", prompt)))[:150]
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
# n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
assert prompt is not None
data = [batch_size * [prompt]]
modelFS.to(device)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
init_latent = repeat(init_latent, "1 ... -> b ...", b=batch_size)
if mask_image is None:
mask = load_mask(image['mask'], Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device)
else:
image['mask']=mask_image
mask = load_mask(mask_image, Height, Width, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
if strength == 1:
print("strength should be less than 1, setting it to 0.999")
strength = 0.999
assert 0.0 <= strength < 1.0, "can only work with strength in [0.0, 1.0]"
t_enc = int(strength * ddim_steps)
print(f"target t_enc is {t_enc} steps")
if full_precision == False and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
all_samples = []
seeds = ""
with torch.no_grad():
all_samples = list()
for _ in trange(n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent, torch.tensor([t_enc] * batch_size).to(device),
seed, ddim_eta, ddim_steps)
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
mask=mask,
x_T=init_latent,
sampler=sampler,
)
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
all_samples.append(x_sample.to("cpu"))
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, "seed_" + str(seed) + "_" + f"{base_count:05}.{img_format}")
)
seeds += str(seed) + ","
seed += 1
base_count += 1
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
del samples_ddim
del x_sample
del x_samples_ddim
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
toc = time.time()
time_taken = (toc - tic) / 60.0
grid = torch.cat(all_samples, 0)
grid = make_grid(grid, nrow=n_iter)
grid = 255.0 * rearrange(grid, "c h w -> h w c").cpu().numpy()
txt = (
"Samples finished in "
+ str(round(time_taken, 3))
+ " minutes and exported to \n"
+ sample_path
+ "\nSeeds used = "
+ seeds[:-1]
)
return Image.fromarray(grid.astype(np.uint8)), image['mask'], txt
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='txt2img using gradio')
parser.add_argument('--config_path', default="optimizedSD/v1-inference.yaml", type=str, help='config path')
parser.add_argument('--ckpt_path', default="models/ldm/stable-diffusion-v1/model.ckpt", type=str, help='ckpt path')
args = parser.parse_args()
config = args.config_path
ckpt = args.ckpt_path
sd = load_model_from_config(f"{ckpt}")
li, lo = [], []
for key, v_ in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
demo = gr.Interface(
fn=generate,
inputs=[
gr.Image(tool="sketch", type="pil"),
gr.Image(tool="editor", type="pil"),
"text",
gr.Slider(0, 0.99, value=0.99, step=0.01),
gr.Slider(1, 1000, value=50),
gr.Slider(1, 100, step=1),
gr.Slider(1, 100, step=1),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(64, 4096, value=512, step=64),
gr.Slider(0, 50, value=7.5, step=0.1),
gr.Slider(0, 1, step=0.01),
gr.Slider(1, 2, value=1, step=1),
gr.Text(value="cuda"),
"text",
gr.Text(value="outputs/inpaint-samples"),
gr.Radio(["png", "jpg"], value='png'),
"checkbox",
"checkbox",
],
outputs=["image", "image", "text"],
)
demo.launch()