-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathenvironment.py
228 lines (159 loc) · 7.98 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import gym
from gym import spaces
import numpy as np
class RIS_MISO_PDA(gym.Env):
def __init__(self, num_antennas,
num_RIS_elements,
num_users,
mismatch=False,
channel_est_error=False,
cascaded_channels=False,
beta_min=0.6,
theta_bar=0.0,
kappa_bar=1.5,
AWGN_var=1e-2,
channel_noise_var=1e-2,
seed=0):
super(RIS_MISO_PDA, self).__init__()
self._max_episode_steps = np.inf
self.M = num_antennas
self.L = num_RIS_elements
self.K = num_users
self.mismatch = mismatch
self.channel_est_error = channel_est_error
self.cascaded_channels = cascaded_channels
self.beta_min = beta_min
self.theta_bar = theta_bar
self.kappa_bar = kappa_bar
assert self.M == self.K
self.awgn_var = AWGN_var
self.channel_noise_var = channel_noise_var
power_size = 2 * self.K
self.action_dim = 2 * self.M * self.K + 2 * self.L
if self.cascaded_channels:
channel_size = 2 * self.K * self.L * self.M
else:
channel_size = 2 * (self.L * self.M + self.L * self.K)
self.state_dim = power_size + channel_size + self.action_dim
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(self.state_dim,), dtype=float)
self.action_space = spaces.Box(low=-5, high=5, shape=(self.action_dim,), dtype=float)
self.H_1 = None
self.H_2 = None
self.G = np.eye(self.M, dtype=complex)
self.Phi = np.eye(self.L, dtype=complex)
self.Phi_mismatch = np.eye(self.L, dtype=complex)
self.state = None
self.done = None
self.episode_t = None
self.info = {'episode': None, 'true reward': None}
self.seed(seed)
def seed(self, seed):
np.random.seed(seed)
def _compute_PDA(self, angles):
betas = (1 - self.beta_min) * ((np.sin(angles - self.theta_bar) + 1) / 2) ** self.kappa_bar + self.beta_min
return betas
def _compute_D(self):
D = np.diag(self.H_2[:, 0]) @ self.H_1
for column_idx in np.arange(1, self.H_2.shape[1]):
D = np.vstack((D, np.diag(self.H_2[:, column_idx] @ self.H_1)))
if self.channel_est_error:
D += np.random.normal(0, np.sqrt(self.channel_noise_var / 2), D.shape) + 1j * np.random.normal(0, np.sqrt(self.channel_noise_var / 2), D.shape)
return D
def _compute_H_2_tilde(self, D):
if self.cascaded_channels:
return np.diag(list(np.diag(self.Phi)) * self.K) @ D @ self.G
else:
return self.H_2.T @ self.Phi @ self.H_1 @ self.G
def reset(self):
self.episode_t = 0
self.info["true reward"] = 0
self.H_1 = np.random.normal(0, np.sqrt(0.5), (self.L, self.M)) + 1j * np.random.normal(0, np.sqrt(0.5), (self.L, self.M))
self.H_2 = np.random.normal(0, np.sqrt(0.5), (self.L, self.K)) + 1j * np.random.normal(0, np.sqrt(0.5), (self.L, self.K))
init_action_G = np.hstack((np.real(self.G.reshape(1, -1)), np.imag(self.G.reshape(1, -1))))
init_action_Phi = np.hstack((np.real(np.diag(self.Phi)).reshape(1, -1), np.imag(np.diag(self.Phi)).reshape(1, -1)))
init_action = np.hstack((init_action_G, init_action_Phi))
Phi_real = init_action[:, -2 * self.L:-self.L]
Phi_imag = init_action[:, -self.L:]
angles = np.arctan2(Phi_real, Phi_imag)
betas = self._compute_PDA(angles)
if self.mismatch:
self.Phi = np.eye(self.L, dtype=complex) * (Phi_real + 1j * Phi_imag) * betas
else:
self.Phi = np.eye(self.L, dtype=complex) * (Phi_real + 1j * Phi_imag)
self.Phi_mismatch = self.Phi * betas
power_t = np.real(np.diag(self.G.conjugate().T @ self.G)).reshape(1, -1) ** 2
D = self._compute_D()
H_2_tilde = self._compute_H_2_tilde(D)
# power_r_real = np.real(H_2_tilde).reshape(1, -1) ** 2
# power_r_imag = np.imag(H_2_tilde).reshape(1, -1) ** 2
# power_r = np.hstack((power_r_real, power_r_imag))
power_r = np.linalg.norm(H_2_tilde, axis=0).reshape(1, -1) ** 2
if self.cascaded_channels:
D_real, D_imag = np.real(D).reshape(1, -1), np.imag(D).reshape(1, -1)
self.state = np.hstack((init_action, power_t, power_r, D_real, D_imag))
else:
H_1_real, H_1_imag = np.real(self.H_1).reshape(1, -1), np.imag(self.H_1).reshape(1, -1)
H_2_real, H_2_imag = np.real(self.H_2).reshape(1, -1), np.imag(self.H_2).reshape(1, -1)
self.state = np.hstack((init_action, power_t, power_r, H_1_real, H_1_imag, H_2_real, H_2_imag))
return self.state
def _compute_reward(self, Phi):
reward = 0
opt_reward = 0
for k in range(self.K):
h_2_k = self.H_2[:, k].reshape(-1, 1)
g_k = self.G[:, k].reshape(-1, 1)
x = np.abs(h_2_k.T @ Phi @ self.H_1 @ g_k) ** 2
x = x.item()
G_removed = np.delete(self.G, k, axis=1)
interference = np.sum(np.abs(h_2_k.T @ Phi @ self.H_1 @ G_removed) ** 2)
y = interference + (self.K - 1) * self.awgn_var
rho_k = x / y
reward += np.log(1 + rho_k) / np.log(2)
opt_reward += np.log(1 + x / ((self.K - 1) * self.awgn_var)) / np.log(2)
return reward, opt_reward
def step(self, action, custom_betas=None):
self.episode_t += 1
action = action.reshape(1, -1)
G_real = action[:, :self.M ** 2]
G_imag = action[:, self.M ** 2:2 * self.M ** 2]
Phi_real = action[:, -2 * self.L:-self.L]
Phi_imag = action[:, -self.L:]
self.G = G_real.reshape(self.M, self.K) + 1j * G_imag.reshape(self.M, self.K)
angles = np.arctan2(Phi_real, Phi_imag)
betas = self._compute_PDA(angles)
if self.mismatch:
self.Phi = np.eye(self.L, dtype=complex) * (Phi_real + 1j * Phi_imag) * betas
else:
self.Phi = np.eye(self.L, dtype=complex) * (Phi_real + 1j * Phi_imag)
if custom_betas is not None:
Phi_real_custom = action[:, -2 * self.L:-self.L] / custom_betas
Phi_imag_custom = action[:, -self.L:] / custom_betas
actual_angles = np.arctan2(Phi_real_custom, Phi_imag_custom)
actual_betas = self._compute_PDA(angles)
self.Phi_mismatch = np.eye(self.L, dtype=complex) * (Phi_real_custom + 1j * Phi_imag_custom) * actual_betas
else:
self.Phi_mismatch = self.Phi * betas
power_t = np.real(np.diag(self.G.conjugate().T @ self.G)).reshape(1, -1) ** 2
D = self._compute_D()
H_2_tilde = self._compute_H_2_tilde(D)
# power_r_real = np.real(H_2_tilde).reshape(1, -1) ** 2
# power_r_imag = np.imag(H_2_tilde).reshape(1, -1) ** 2
# power_r = np.hstack((power_r_real, power_r_imag))
power_r = np.linalg.norm(H_2_tilde, axis=0).reshape(1, -1) ** 2
if self.cascaded_channels:
D_real, D_imag = np.real(D).reshape(1, -1), np.imag(D).reshape(1, -1)
self.state = np.hstack((action, power_t, power_r, D_real, D_imag))
else:
H_1_real, H_1_imag = np.real(self.H_1).reshape(1, -1), np.imag(self.H_1).reshape(1, -1)
H_2_real, H_2_imag = np.real(self.H_2).reshape(1, -1), np.imag(self.H_2).reshape(1, -1)
self.state = np.hstack((action, power_t, power_r, H_1_real, H_1_imag, H_2_real, H_2_imag))
reward, opt_reward = self._compute_reward(self.Phi)
if self.mismatch:
true_reward = reward
else:
true_reward, opt_reward = self._compute_reward(self.Phi_mismatch)
done = opt_reward == reward or self.episode_t >= self._max_episode_steps
self.info["true reward"] = true_reward
return self.state, reward, done, self.info
def close(self):
pass