diff --git a/.github/workflows/bib2readme.py b/.github/workflows/bib2readme.py
new file mode 100644
index 0000000..40ee376
--- /dev/null
+++ b/.github/workflows/bib2readme.py
@@ -0,0 +1,110 @@
+from collections import defaultdict
+from typing import Dict, List
+
+import bibtexparser
+
+# Define the categories to be printed in the README
+VALID_CATEGORIES = ["overview", "software", "paper", "uncategorized"]
+
+README_HEADER = """
+Welcome to the Awesome Amortized Inference repository!
+This is a curated list of resources, including overviews, software, papers, and other resources related to amortized inference.
+Feel free to explore the entries below and use the provided BibTeX information for citation purposes.
+Contributioons always welcome, this shall be a community-driven project.
+Contribution guide will follow ASAP.
+"""
+
+
+# Define Entry class
+class Entry:
+ def __init__(self, title: str, authors: str, url: str, category: str, bibtex: str):
+ self.title = title
+ self.authors = authors
+ self.url = url
+ self.category = category
+ self.bibtex = bibtex
+
+ @classmethod
+ def from_bibtex(cls, entry: dict) -> "Entry":
+ title = entry.get("title", "No title").replace("{", "").replace("}", "")
+ authors = entry.get("author", "No author").replace(" and ", ", ")
+ url = entry.get("url", "")
+ category = entry.get("category", "uncategorized").lower()
+ bibtex = cls.format_bibtex(entry)
+ return cls(title, authors, url, category, bibtex)
+
+ @staticmethod
+ def format_bibtex(entry: dict) -> str:
+ bibtex_type = entry.get("ENTRYTYPE", "misc")
+ bibtex_key = entry.get("ID", "unknown")
+ bibtex_fields = [
+ f" {key} = {{{value}}}"
+ for key, value in entry.items()
+ if key not in ["ENTRYTYPE", "ID"]
+ ]
+ bibtex_str = (
+ f"@{bibtex_type}{{{bibtex_key},\n " + ",\n ".join(bibtex_fields) + "\n}"
+ )
+ return bibtex_str
+
+ def to_string(self) -> str:
+ entry_str = f"- **{self.title}**\n {self.authors}\n"
+ if self.url:
+ entry_str += f" [Link]({self.url})\n"
+ entry_str += (
+ f" \n"
+ f" Show BibTeX\n"
+ f""" \n"""
+ f"
\n"
+ f"{self.bibtex}\n"
+ f"
\n"
+ f"\n"
+ )
+ entry_str += "\n"
+ return entry_str
+
+
+def organize_entries(bib_database) -> Dict[str, List[Entry]]:
+ entries_by_category: Dict[str, List[Entry]] = defaultdict(list)
+ for entry in bib_database.entries:
+ entry_obj = Entry.from_bibtex(entry)
+ entries_by_category[entry_obj.category].append(entry_obj)
+ return entries_by_category
+
+
+def create_readme(entries_by_category: Dict[str, List[Entry]]) -> str:
+ readme_content = "# Awesome Amortized Inference\n\n"
+ readme_content += README_HEADER
+
+ for category in VALID_CATEGORIES:
+ if category in entries_by_category:
+ readme_content += f"## {category.capitalize()}\n\n"
+ readme_content += "\n".join(
+ [entry.to_string() for entry in entries_by_category[category]]
+ )
+ readme_content += "\n"
+ return readme_content
+
+
+def main():
+ try:
+ with open("data.bib") as bibtex_file:
+ bib_database = bibtexparser.load(bibtex_file)
+ except FileNotFoundError:
+ print("The data.bib file was not found.")
+ exit(1)
+
+ entries_by_category = organize_entries(bib_database)
+ readme_content = create_readme(entries_by_category)
+
+ with open("README.md", "w") as readme_file:
+ readme_file.write(readme_content)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/.github/workflows/generate_readme_from_bib.yml b/.github/workflows/generate_readme_from_bib.yml
new file mode 100644
index 0000000..6a5acb8
--- /dev/null
+++ b/.github/workflows/generate_readme_from_bib.yml
@@ -0,0 +1,41 @@
+name: Generate README
+
+on:
+ push:
+ branches:
+ - main
+ workflow_dispatch:
+
+jobs:
+ build:
+ runs-on: ubuntu-latest
+
+ steps:
+ # Step 1: Check out the repository code
+ - name: Checkout repository
+ uses: actions/checkout@v3
+
+ # Step 2: Set up Python environment
+ - name: Set up Python
+ uses: actions/setup-python@v4
+ with:
+ python-version: "3.11" # Adjust the Python version if necessary
+
+ # Step 3: Install dependencies
+ - name: Install dependencies
+ run: |
+ python -m pip install --upgrade pip
+ pip install bibtexparser
+
+ # Step 4: Run the script to generate README.md
+ - name: Run README generation script
+ run: python .github/workflows/bib2readme.py
+
+ # Step 5: Commit and push changes if README.md was updated
+ - name: Commit and push changes
+ run: |
+ git config --global user.name 'github-actions[bot]'
+ git config --global user.email 'github-actions[bot]@users.noreply.github.com'
+ git add README.md
+ git diff-index --quiet HEAD || git commit -m "Update README.md"
+ git push
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..f794505
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,3 @@
+*.html
+.DS_Store
+README_files/
\ No newline at end of file
diff --git a/.nojekyll b/.nojekyll
new file mode 100644
index 0000000..e69de29
diff --git a/README.md b/README.md
index 02f4802..b8479cf 100644
--- a/README.md
+++ b/README.md
@@ -1,3 +1,243 @@
# Awesome Amortized Inference
-Under construction
+Welcome to the Awesome Amortized Inference repository!
+This is a curated list of resources, including overviews, software, papers, and other resources related to amortized inference.
+Feel free to explore the entries below and use the provided BibTeX information for citation purposes.
+Contributioons always welcome, this shall be a community-driven project.
+Contribution guide will follow ASAP.
+
+## Overview
+
+- **Normalizing flows for probabilistic modeling and inference**
+Papamakarios, George, Nalisnick, Eric, Rezende, Danilo Jimenez, Mohamed, Shakir, Lakshminarayanan, Balaji
+
+ Show BibTeX
+
+
+@article{papamakarios2021normalizing,
+ category = {overview},
+ numpages = {64},
+ articleno = {57},
+ month = {jan},
+ journal = {J. Mach. Learn. Res.},
+ issn = {1532-4435},
+ number = {1},
+ volume = {22},
+ publisher = {JMLR.org},
+ issue_date = {January 2021},
+ year = {2021},
+ title = {Normalizing flows for probabilistic modeling and inference},
+ author = {Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji}
+}
+
+
+
+## Software
+
+- **BayesFlow: Amortized Bayesian Workflows With Neural Networks**
+Stefan T. Radev, Marvin Schmitt, Lukas Schumacher, Lasse Elsemüller, Valentin Pratz, Yannik Schälte, Ullrich Köthe, Paul-Christian Bürkner
+[Link](https://bayesflow.org/)
+
+ Show BibTeX
+
+
+@article{radev2023bayesflow,
+ category = {software},
+ journal = {Journal of Open Source Software},
+ title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
+ author = {Stefan T. Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsemüller and Valentin Pratz and Yannik Schälte and Ullrich Köthe and Paul-Christian Bürkner},
+ pages = {5702},
+ number = {89},
+ volume = {8},
+ publisher = {The Open Journal},
+ year = {2023},
+ url = {https://bayesflow.org/},
+ doi = {10.21105/joss.05702}
+}
+
+
+
+- **sbi: A toolkit for simulation-based inference**
+Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J. Gonçalves, David S. Greenberg, Jakob H. Macke
+[Link](https://sbi-dev.github.io/sbi/latest/)
+
+ Show BibTeX
+
+
+@article{tejero-cantero2020sbi,
+ category = {software},
+ journal = {Journal of Open Source Software},
+ title = {sbi: A toolkit for simulation-based inference},
+ author = {Alvaro Tejero-Cantero and Jan Boelts and Michael Deistler and Jan-Matthis Lueckmann and Conor Durkan and Pedro J. Gonçalves and David S. Greenberg and Jakob H. Macke},
+ pages = {2505},
+ number = {52},
+ volume = {5},
+ publisher = {The Open Journal},
+ year = {2020},
+ url = {https://sbi-dev.github.io/sbi/latest/},
+ doi = {10.21105/joss.02505}
+}
+
+
+
+## Paper
+
+- **Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference**
+Dax, Maximilian, Green, Stephen R., Gair, Jonathan, P\"{u}rrer, Michael, Wildberger, Jonas, Macke, Jakob H., Buonanno, Alessandra, Sch\"{o}lkopf, Bernhard
+[Link](http://dx.doi.org/10.1103/PhysRevLett.130.171403)
+
+ Show BibTeX
+
+
+@article{dax2023neural,
+ category = {paper},
+ year = {2023},
+ author = {Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P\"{u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch\"{o}lkopf, Bernhard},
+ publisher = {American Physical Society (APS)},
+ journal = {Physical Review Letters},
+ number = {17},
+ doi = {10.1103/physrevlett.130.171403},
+ url = {http://dx.doi.org/10.1103/PhysRevLett.130.171403},
+ issn = {1079-7114},
+ volume = {130},
+ title = {Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference}
+}
+
+@inproceedings{radev2023jana,
+ category = {paper},
+ publisher = {PMLR},
+ series = {Proceedings of Machine Learning Research},
+ volume = {216},
+ editor = {Evans, Robin J. and Shpitser, Ilya},
+ year = {2023},
+ pages = {1695--1706},
+ booktitle = {Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence},
+ author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian},
+ title = {{JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models}}
+}
+
+
+
+- **ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems**
+Rafael Orozco, Ali Siahkoohi, Mathias Louboutin, Felix J. Herrmann
+[Link](https://arxiv.org/abs/2405.05398)
+
+ Show BibTeX
+
+
+@misc{orozco2024aspire,
+ category = {paper},
+ url = {https://arxiv.org/abs/2405.05398},
+ eprint = {arXiv:2405.05398},
+ year = {2024},
+ title = {ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems},
+ author = {Rafael Orozco and Ali Siahkoohi and Mathias Louboutin and Felix J. Herrmann}
+}
+
+
diff --git a/data.bib b/data.bib
new file mode 100644
index 0000000..50c337d
--- /dev/null
+++ b/data.bib
@@ -0,0 +1,79 @@
+@article{dax2023neural,
+ title = {Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference},
+ volume = {130},
+ ISSN = {1079-7114},
+ url = {http://dx.doi.org/10.1103/PhysRevLett.130.171403},
+ DOI = {10.1103/physrevlett.130.171403},
+ number = {17},
+ journal = {Physical Review Letters},
+ publisher = {American Physical Society (APS)},
+ author = {Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P\"{u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch\"{o}lkopf, Bernhard},
+ year = {2023},
+ category = {paper},
+}
+
+@article{radev2023bayesflow,
+ doi = {10.21105/joss.05702},
+ url = {https://bayesflow.org/},
+ year = {2023},
+ publisher = {The Open Journal},
+ volume = {8},
+ number = {89},
+ pages = {5702},
+ author = {Stefan T. Radev and Marvin Schmitt and Lukas Schumacher and Lasse Elsemüller and Valentin Pratz and Yannik Schälte and Ullrich Köthe and Paul-Christian Bürkner},
+ title = {BayesFlow: Amortized Bayesian Workflows With Neural Networks},
+ journal = {Journal of Open Source Software} ,
+ category = {software}
+}
+
+@article{tejero-cantero2020sbi,
+ doi = {10.21105/joss.02505},
+ url = {https://sbi-dev.github.io/sbi/latest/},
+ year = {2020},
+ publisher = {The Open Journal},
+ volume = {5},
+ number = {52},
+ pages = {2505},
+ author = {Alvaro Tejero-Cantero and Jan Boelts and Michael Deistler and Jan-Matthis Lueckmann and Conor Durkan and Pedro J. Gonçalves and David S. Greenberg and Jakob H. Macke},
+ title = {sbi: A toolkit for simulation-based inference},
+ journal = {Journal of Open Source Software},
+ category = {software}
+}
+
+@article{papamakarios2021normalizing,
+author = {Papamakarios, George and Nalisnick, Eric and Rezende, Danilo Jimenez and Mohamed, Shakir and Lakshminarayanan, Balaji},
+title = {Normalizing flows for probabilistic modeling and inference},
+year = {2021},
+issue_date = {January 2021},
+publisher = {JMLR.org},
+volume = {22},
+number = {1},
+issn = {1532-4435},
+journal = {J. Mach. Learn. Res.},
+month = {jan},
+articleno = {57},
+numpages = {64},
+category = {overview}
+}
+
+@InProceedings{radev2023jana,
+ title = {{JANA: Jointly Amortized Neural Approximation of Complex Bayesian Models}},
+ author = {Radev, Stefan T. and Schmitt, Marvin and Pratz, Valentin and Picchini, Umberto and K\"othe, Ullrich and B\"urkner, Paul-Christian},
+ booktitle = {Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence},
+ pages = {1695--1706},
+ year = {2023},
+ editor = {Evans, Robin J. and Shpitser, Ilya},
+ volume = {216},
+ series = {Proceedings of Machine Learning Research},
+ publisher = {PMLR},
+ category = {paper},
+}
+
+@misc{orozco2024aspire,
+Author = {Rafael Orozco and Ali Siahkoohi and Mathias Louboutin and Felix J. Herrmann},
+Title = {ASPIRE: Iterative Amortized Posterior Inference for Bayesian Inverse Problems},
+Year = {2024},
+Eprint = {arXiv:2405.05398},
+url = {https://arxiv.org/abs/2405.05398},
+category = {paper}
+}
\ No newline at end of file