From 418d4527d74a02e9564b8267b60082c368367a9c Mon Sep 17 00:00:00 2001 From: Colin Mahony Date: Tue, 17 Dec 2024 08:33:54 -0800 Subject: [PATCH] add manual test for observed period --- .../check_CompareObservedPeriod.R | 182 ++++++++++++++++++ 1 file changed, 182 insertions(+) create mode 100644 tests/manual_tests/check_CompareObservedPeriod.R diff --git a/tests/manual_tests/check_CompareObservedPeriod.R b/tests/manual_tests/check_CompareObservedPeriod.R new file mode 100644 index 0000000..a435f72 --- /dev/null +++ b/tests/manual_tests/check_CompareObservedPeriod.R @@ -0,0 +1,182 @@ +## Manual tests: compare climr observed period to time series and source data + +library(climr) +library(sf) +library(maps) +library(terra) +library(data.table) + +##make study area dem +dem_source <- rast("//objectstore2.nrs.bcgov/ffec/DEM/DEM_NorAm/NA_Elevation/data/northamerica/northamerica_elevation_cec_2023.tif") ##DEM - I'm using a 30 m one + +# Get the boundary of washington +map <- map("state", "Washington", plot = FALSE, fill = TRUE) +bnd <- vect(st_as_sf(map)) +bnd <- project(bnd,"epsg:4326") # project to albers to be able to specify resolution in meters. +dem <- rast(bnd,res = 0.5) ## ENHANCEMENT NEEDED: CHANGE HARD-CODED RESOLUTION TO DYNAMIC RESOLUTION MATCHING USER-SPECIFIED NUMBER OF CELLS + +dem <- project(dem_source,dem, method="near") ## extract 30m dem values to the custom raster. use nearest neighbour to preserve elevation variance. +dem <- mask(dem,bnd) + +## make the climr input file +points_dat <- as.data.frame(dem, cells=T, xy=T) +colnames(points_dat) <- c("id", "lon", "lat", "elev") +points_dat <- points_dat[points_dat$lon > -120,] # select Eastern washington +# points_dat <- points_dat[points_dat$lat > 38,] # select Northern California +points_dat <- points_dat[,c(2,3,4,1)] #restructure for climr input + +xvar = "Tmin_sm" +yvar = "PPT_sm" +# percent_x = NULL, TODO: set up an override for ratio variables being expressed as percent anomalies +# percent_y = NULL, TODO: set up an override for ratio variables being expressed as percent anomalies +period_focal = list_gcm_periods()[1] +gcms = list_gcms()[c(1, 4, 5, 6, 7, 10, 11, 12)] +ssp = list_ssps()[2] +obs_period = list_obs_periods()[1] +gcm_periods = list_gcm_periods() +max_run = 10 +legend_pos = "bottomleft" +show_runs = TRUE +show_ensMean = TRUE +show_observed = TRUE +show_trajectories = TRUE +interactive = FALSE +cache = TRUE + + +# variable types for default scaling (percent or absolute) +xvar_type <- variables$Type[which(variables$Code == xvar)] +yvar_type <- variables$Type[which(variables$Code == yvar)] + +colors <- c("#A6CEE3", "#1F78B4", "#B2DF8A", "#33A02C", "#FB9A99", "#E31A1C", "#FDBF6F", "#FF7F00", "#CAB2D6", "#6A3D9A", "#1e90ff", "#B15928", "#FFFF99") +ColScheme <- colors[1:length(gcms)] + +# generate the climate data +data <- downscale(xyz, + obs_periods = obs_period, + obs_ts_dataset = c("climatena", "cru.gpcc"), + obs_years = 2001:2020, + vars = c(xvar, yvar), + cache = cache +) + +# convert absolute values to anomalies +data[, xanom := if (xvar_type == "ratio") (get(xvar) / get(xvar)[1] - 1) else (get(xvar) - get(xvar)[1]), by = id] +data[, yanom := if (yvar_type == "ratio") (get(yvar) / get(yvar)[1] - 1) else (get(yvar) - get(yvar)[1]), by = id] + +# mean of observed period anomalies (spatial variation in average) +mean(data[PERIOD == obs_period, xanom]) +# mean of observed ts anomalies +mean(data[DATASET=="cru.gpcc" & PERIOD %in% 2001:2020, xanom], na.rm=T) +mean(data[DATASET=="climatena" & PERIOD %in% 2001:2020, xanom], na.rm=T) +# the observed anomalies and cru ts should have the same mean, but they don't. this holds for tave, tmax, and tmin, in multiple months + + +#----------------------------- +# Raw CRU data +#----------------------------- + +monthcodes <- c("01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12") +monthdays <- c(31, 28.25, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31) +elements.cru <- c("tmn", "tmx", "pre", "tmp") +elements <- c("Tmin", "Tmax", "PPT", "Tave") + +e=1 +m=7 +element <- elements.cru[e] +# dir <- "//objectstore2.nrs.bcgov/ffec/TimeSeries_gridded_monthly/cru_ts4.07" #takes way too long to read from object storage +dir <- "C:/Users/CMAHONY/OneDrive - Government of BC/Data/cru_ts4.08" +files <- list.files(dir, pattern=".nc$") +cru <- rast(paste(dir, files[grep(element, files)], sep="/")) + +cru <- crop(cru, bnd) +cru <- mask(cru, bnd) +# plot(cru[[1]]) + +# reduce to selected month +temp <- cru[[which(substr(time(cru),6,7)==monthcodes[m])]] +names(temp) <- substr(time(temp),1,4) + +# check the CRU anomaly for a single location +point <- vect(matrix(c(-120, 47), 1)) +plot(point, add=T) +ts <- extract(temp, point, id=F) +ts.x <- names(ts)[2:123] +ts.y <- as.numeric(ts[2:123]) +ts.n <- as.numeric(ts[124:length(ts)]) +ref.cru <- mean(ts.y[ts.x%in%1961:1990]) +curr.cru <- mean(ts.y[ts.x%in%2001:2020]) +anom.cru <- curr.cru - ref.cru + +# check the CRU anomaly for WA state +ts <- subset(temp, 1:123) +ref.cru <- mean(values(subset(ts, as.character(1961:1990))), na.rm=T) +curr.cru <- mean(values(subset(ts, as.character(2001:2020))), na.rm=T) +anom.cru <- curr.cru - ref.cru + +#----------------------------- +# climr transfer anomalies +#----------------------------- + +element <- elements[e] +dir <- "//objectstore2.nrs.bcgov/ffec/TransferAnomalies" +files <- list.files(dir, pattern=".tif") +r <- rast(paste(dir, "delta.from.1961_1990.to.2001_2010.Tmin.tif", sep="/"))[[m]] +plot(r) +mean(values(r)) + +#----------------------------- +# climr input raster +#----------------------------- + +thebb <- get_bb(points_dat) +dbCon <- data_connect() +r <- input_obs(dbCon, bbox=thebb)[[1]] +r <- subset(r, paste(elements[e], monthcodes[m], sep="_")) +plot(r) + +#----------------------------- +# climr output +#----------------------------- + + +dem.na <- aggregate(dem_source, fact=10) +dem.na <- project(dem.na,"epsg:4326") # project to albers to be able to specify resolution in meters. +dem.na <- aggregate(dem.na, fact=10) +dem.save <- dem.na +dem.na <- crop(dem.na, ext(c(-170, -50, 14, 89))) +plot(dem.na) + +grid.na <- as.data.frame(dem.na, cells=T, xy=T) +colnames(grid.na) <- c("id", "lon", "lat", "elev") +grid.na <- grid.na[,c(2,3,4,1)] #restructure for climr input + +var <- paste(elements[e], monthcodes[m], sep="_") + +data.na <- downscale(grid.na, + obs_periods = obs_period, + obs_ts_dataset = c("climatena", "cru.gpcc"), + obs_years = 2001:2020, + vars = var, + cache = cache +) + +anom <- data.na[PERIOD=="2001_2020", get(var)] - data.na[PERIOD=="1961_1990", get(var)] + +X <- dem.na +X[grid.na$id] <- anom +plot(X) + +# convert absolute values to anomalies +data.na[, xanom := (get(var) - get(var)[1]), by = id] + +anom.ts.mean <- data.na[DATASET=="cru.gpcc", .(mean_value = mean(xanom)), by = id][,2] +X[grid.na$id] <- anom.ts.mean +plot(X) + +# mean of observed period anomalies (spatial variation in average) +mean(data.na[PERIOD == obs_period, xanom]) +# mean of observed ts anomalies +mean(data.na[DATASET=="cru.gpcc" & PERIOD %in% 2001:2020, xanom], na.rm=T) +mean(data.na[DATASET=="climatena" & PERIOD %in% 2001:2020, xanom], na.rm=T) +# the observed anomalies and cru ts should have the same mean, but they don't. this holds for tave, tmax, and tmin, in multiple months