forked from openai/baselines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ppo2.py
224 lines (173 loc) · 9.99 KB
/
ppo2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import time
import numpy as np
import os.path as osp
from baselines import logger
from collections import deque
from baselines.common import explained_variance, set_global_seeds
from baselines.common.policies import build_policy
try:
from mpi4py import MPI
except ImportError:
MPI = None
from baselines.ppo2.runner import Runner
def constfn(val):
def f(_):
return val
return f
def learn(*, network, env, total_timesteps, eval_env = None, seed=None, nsteps=2048, ent_coef=0.0, lr=3e-4,
vf_coef=0.5, max_grad_norm=0.5, gamma=0.99, lam=0.95,
log_interval=10, nminibatches=4, noptepochs=4, cliprange=0.2,
save_interval=0, load_path=None, model_fn=None, update_fn=None, init_fn=None, mpi_rank_weight=1, comm=None, **network_kwargs):
'''
Learn policy using PPO algorithm (https://arxiv.org/abs/1707.06347)
Parameters:
----------
network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list)
specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns
tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward
neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets.
See common/models.py/lstm for more details on using recurrent nets in policies
env: baselines.common.vec_env.VecEnv environment. Needs to be vectorized for parallel environment simulation.
The environments produced by gym.make can be wrapped using baselines.common.vec_env.DummyVecEnv class.
nsteps: int number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where
nenv is number of environment copies simulated in parallel)
total_timesteps: int number of timesteps (i.e. number of actions taken in the environment)
ent_coef: float policy entropy coefficient in the optimization objective
lr: float or function learning rate, constant or a schedule function [0,1] -> R+ where 1 is beginning of the
training and 0 is the end of the training.
vf_coef: float value function loss coefficient in the optimization objective
max_grad_norm: float or None gradient norm clipping coefficient
gamma: float discounting factor
lam: float advantage estimation discounting factor (lambda in the paper)
log_interval: int number of timesteps between logging events
nminibatches: int number of training minibatches per update. For recurrent policies,
should be smaller or equal than number of environments run in parallel.
noptepochs: int number of training epochs per update
cliprange: float or function clipping range, constant or schedule function [0,1] -> R+ where 1 is beginning of the training
and 0 is the end of the training
save_interval: int number of timesteps between saving events
load_path: str path to load the model from
**network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network
For instance, 'mlp' network architecture has arguments num_hidden and num_layers.
'''
set_global_seeds(seed)
if isinstance(lr, float): lr = constfn(lr)
else: assert callable(lr)
if isinstance(cliprange, float): cliprange = constfn(cliprange)
else: assert callable(cliprange)
total_timesteps = int(total_timesteps)
policy = build_policy(env, network, **network_kwargs)
# Get the nb of env
nenvs = env.num_envs
# Get state_space and action_space
ob_space = env.observation_space
ac_space = env.action_space
# Calculate the batch_size
nbatch = nenvs * nsteps
nbatch_train = nbatch // nminibatches
is_mpi_root = (MPI is None or MPI.COMM_WORLD.Get_rank() == 0)
# Instantiate the model object (that creates act_model and train_model)
if model_fn is None:
from baselines.ppo2.model import Model
model_fn = Model
model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train,
nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef,
max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight)
if load_path is not None:
model.load(load_path)
# Instantiate the runner object
runner = Runner(env=env, model=model, nsteps=nsteps, gamma=gamma, lam=lam)
if eval_env is not None:
eval_runner = Runner(env = eval_env, model = model, nsteps = nsteps, gamma = gamma, lam= lam)
epinfobuf = deque(maxlen=100)
if eval_env is not None:
eval_epinfobuf = deque(maxlen=100)
if init_fn is not None:
init_fn()
# Start total timer
tfirststart = time.perf_counter()
nupdates = total_timesteps//nbatch
for update in range(1, nupdates+1):
assert nbatch % nminibatches == 0
# Start timer
tstart = time.perf_counter()
frac = 1.0 - (update - 1.0) / nupdates
# Calculate the learning rate
lrnow = lr(frac)
# Calculate the cliprange
cliprangenow = cliprange(frac)
if update % log_interval == 0 and is_mpi_root: logger.info('Stepping environment...')
# Get minibatch
obs, returns, masks, actions, values, neglogpacs, states, epinfos = runner.run() #pylint: disable=E0632
if eval_env is not None:
eval_obs, eval_returns, eval_masks, eval_actions, eval_values, eval_neglogpacs, eval_states, eval_epinfos = eval_runner.run() #pylint: disable=E0632
if update % log_interval == 0 and is_mpi_root: logger.info('Done.')
epinfobuf.extend(epinfos)
if eval_env is not None:
eval_epinfobuf.extend(eval_epinfos)
# Here what we're going to do is for each minibatch calculate the loss and append it.
mblossvals = []
if states is None: # nonrecurrent version
# Index of each element of batch_size
# Create the indices array
inds = np.arange(nbatch)
for _ in range(noptepochs):
# Randomize the indexes
np.random.shuffle(inds)
# 0 to batch_size with batch_train_size step
for start in range(0, nbatch, nbatch_train):
end = start + nbatch_train
mbinds = inds[start:end]
slices = (arr[mbinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
mblossvals.append(model.train(lrnow, cliprangenow, *slices))
else: # recurrent version
assert nenvs % nminibatches == 0
envsperbatch = nenvs // nminibatches
envinds = np.arange(nenvs)
flatinds = np.arange(nenvs * nsteps).reshape(nenvs, nsteps)
for _ in range(noptepochs):
np.random.shuffle(envinds)
for start in range(0, nenvs, envsperbatch):
end = start + envsperbatch
mbenvinds = envinds[start:end]
mbflatinds = flatinds[mbenvinds].ravel()
slices = (arr[mbflatinds] for arr in (obs, returns, masks, actions, values, neglogpacs))
mbstates = states[mbenvinds]
mblossvals.append(model.train(lrnow, cliprangenow, *slices, mbstates))
# Feedforward --> get losses --> update
lossvals = np.mean(mblossvals, axis=0)
# End timer
tnow = time.perf_counter()
# Calculate the fps (frame per second)
fps = int(nbatch / (tnow - tstart))
if update_fn is not None:
update_fn(update)
if update % log_interval == 0 or update == 1:
# Calculates if value function is a good predicator of the returns (ev > 1)
# or if it's just worse than predicting nothing (ev =< 0)
ev = explained_variance(values, returns)
logger.logkv("misc/serial_timesteps", update*nsteps)
logger.logkv("misc/nupdates", update)
logger.logkv("misc/total_timesteps", update*nbatch)
logger.logkv("fps", fps)
logger.logkv("misc/explained_variance", float(ev))
logger.logkv('eprewmean', safemean([epinfo['r'] for epinfo in epinfobuf]))
logger.logkv('eplenmean', safemean([epinfo['l'] for epinfo in epinfobuf]))
if eval_env is not None:
logger.logkv('eval_eprewmean', safemean([epinfo['r'] for epinfo in eval_epinfobuf]) )
logger.logkv('eval_eplenmean', safemean([epinfo['l'] for epinfo in eval_epinfobuf]) )
logger.logkv('misc/time_elapsed', tnow - tfirststart)
for (lossval, lossname) in zip(lossvals, model.loss_names):
logger.logkv('loss/' + lossname, lossval)
logger.dumpkvs()
if save_interval and (update % save_interval == 0 or update == 1) and logger.get_dir() and is_mpi_root:
checkdir = osp.join(logger.get_dir(), 'checkpoints')
os.makedirs(checkdir, exist_ok=True)
savepath = osp.join(checkdir, '%.5i'%update)
print('Saving to', savepath)
model.save(savepath)
return model
# Avoid division error when calculate the mean (in our case if epinfo is empty returns np.nan, not return an error)
def safemean(xs):
return np.nan if len(xs) == 0 else np.mean(xs)