forked from NSSAC/PatchSim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpatchsim.py
353 lines (274 loc) · 13.5 KB
/
patchsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python
# -*- coding: utf-8 -*-
''' PatchSim v1.2
Created and maintained by: Srini ([email protected])
Date last modified: 6 Aug 2019
'''
import numpy as np
import pandas as pd
import logging
import time
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
def read_config(config_file):
config_df = pd.read_csv(config_file,delimiter='=',names=['key','val'])
configs = dict(zip(config_df.key,config_df.val))
configs.setdefault('Model', 'Mobility')
return configs
def load_patch(configs):
patch_df = pd.read_csv(configs['PatchFile'],names=['id','pops'],
delimiter=' ',dtype={'id':str,'pops':int})
patch_df.sort_values('id',inplace=True)
logger.info('Loaded patch attributes')
return patch_df
def load_params(configs,patch_df):
params = {}
params['T'] = int(configs['Duration'])
try:
#params['beta'] = np.repeat(float(configs['ExposureRate']),len(patch_df))
params['beta'] = np.ones([len(patch_df),params['T']])*float(configs['ExposureRate'])
params['alpha'] = float(configs['InfectionRate'])
params['gamma'] = float(configs['RecoveryRate'])
logger.info('Loaded disease parameters from Config')
except:
params['beta'] = np.zeros([len(patch_df),params['T']])
params['alpha'] = np.repeat(0.0,len(patch_df))
params['gamma'] = np.repeat(0.0,len(patch_df))
logger.info('No parameter values in Config. Setting default to 0.')
try:
param_df = pd.read_csv(configs['ParamFile'], delimiter=' ',dtype={0:str},header=None).set_index(0).fillna(method='ffill',axis=1)
patch_idx = dict(zip(patch_df.id.values,range(len(patch_df))))
param_df['Id_int'] = param_df.index.map(patch_idx)
param_df.sort_values('Id_int',inplace=True)
params['beta'][param_df.Id_int.values,:] = param_df[param_df.columns.difference(['Id_int'])].values
logger.info('Loaded disease parameters from ParamFile')
except:
logger.info('No ParamFile loaded')
pass
### Optional parameters
try:
params['scaling'] = float(configs['ScalingFactor'])
except:
params['scaling'] = 1
try:
params['vaxeff'] = float(configs['VaxEfficacy'])
except:
params['vaxeff'] = 1.0
try:
params['delta'] = float(configs['WaningRate'])
logger.info('Found WaningRate. Running SEIRS model.')
except:
params['delta'] = 0.0
try:
params['kappa'] = 1-float(configs['AsymptomaticReduction'])
except:
params['kappa'] = 1.0
try:
params['symprob'] = float(configs['SymptomaticProbability'])
except:
params['symprob'] = 1.0
try:
params['epsilon'] = float(configs['PresymptomaticReduction'])
except:
params['epsilon'] = 1.0
return params
def load_seed(configs,params,patch_df):
try:
seed_df = pd.read_csv(configs['SeedFile'],delimiter=' ',names=['Day','Id','Count'],dtype={'Id':str})
except:
empty_seed = np.ndarray((params['T'],len(patch_df)))
empty_seed.fill(0.0)
logger.info('Continuing without seeding')
return empty_seed
patch_idx = dict(zip(patch_df.id.values,range(len(patch_df))))
seed_df['Id_int'] = seed_df.Id.apply(lambda x: patch_idx[x])
seed_df = seed_df.pivot(index='Day',columns='Id_int',values='Count').fillna(0)
seed_df = seed_df.reindex(index=range(params['T']),columns = range(len(patch_df))).fillna(0)
logger.info('Loaded seeding schedule')
return seed_df.values
def load_vax(configs,params,patch_df):
try:
vax_df = pd.read_csv(configs['VaxFile'],delimiter=' ',
names=['Day','Id','Count'],dtype={'Id':str,'Count':int})
except:
empty_vax = np.ndarray((params['T'],len(patch_df)))
empty_vax.fill(0.0)
return empty_vax
try:
vax_delay = int(configs['VaxDelay'])
except:
vax_delay = 0
patch_idx = dict(zip(patch_df.id.values,range(len(patch_df))))
vax_df['Id_int'] = vax_df.Id.apply(lambda x: patch_idx[x])
vax_df['Delayed_Day'] = vax_df['Day'] + vax_delay
vax_df = vax_df.pivot(index='Delayed_Day',columns='Id_int',values='Count').fillna(0)
vax_df = vax_df.reindex(index=range(params['T']),columns = range(len(patch_df))).fillna(0)
return vax_df.values.astype(int)
def load_Theta(configs, patch_df):
theta_df = pd.read_csv(configs['NetworkFile'],names=['src_Id','dest_Id','theta_index','flow'],
delimiter=' ',dtype={'src_Id':str, 'dest_Id':str})
if (configs['NetworkType']=='Static') & (len(theta_df.theta_index.unique())!=1):
logger.info("Theta indices mismatch. Ensure NetworkType=Static.")
if (configs['NetworkType']=='Weekly') & (len(theta_df.theta_index.unique())!=53):
logger.info("Theta indices mismatch. Ensure NetworkType=Weekly.")
if (configs['NetworkType']=='Monthly') & (len(theta_df.theta_index.unique())!=12):
logger.info("Theta indices mismatch. Ensure NetworkType=Monthly.")
patch_idx = dict(zip(patch_df.id.values,range(len(patch_df))))
try:
theta_df['src_Id_int'] = theta_df.src_Id.apply(lambda x: patch_idx[x])
theta_df['dest_Id_int'] = theta_df.dest_Id.apply(lambda x: patch_idx[x])
except:
logger.info("Ignoring flow entries for missing patches. Ensure all patches listed in PatchFile.")
Theta_indices = theta_df.theta_index.unique()
Theta = np.ndarray((len(Theta_indices),len(patch_df),len(patch_df)))
for k in Theta_indices:
theta_df_k = theta_df[theta_df.theta_index==k]
theta_df_k = theta_df_k.pivot(index='src_Id_int',columns='dest_Id_int',values='flow').fillna(0)
theta_df_k = theta_df_k.reindex(index=range(len(patch_df)),columns = range(len(patch_df))).fillna(0)
Theta[int(k)] = theta_df_k.values
logger.info('Loaded temporal travel matrix')
return Theta
def patchsim_step(State_Array,patch_df,configs,params,theta,seeds,vaxs,t,stoch):
S,E,I,R,V,new_inf = State_Array ## Aliases for the State Array
## seeding for day t (seeding implies S->I)
actual_seed = np.minimum(seeds[t],S[t])
S[t] = S[t] - actual_seed
I[t] = I[t] + actual_seed
if stoch:
## vaccination for day t
max_SV = np.minimum(vaxs[t],S[t])
actual_SV = np.random.binomial(max_SV.astype(int),params['vaxeff'])
S[t] = S[t] - actual_SV
V[t] = V[t] + actual_SV
## Computing force of infection
N = patch_df.pops.values
S_edge = np.concatenate([np.random.multinomial(S[t][x],theta[x]/(theta[x].sum()+10**-12)).reshape(1,len(N)) for x in range(len(N))],axis=0)
E_edge = np.concatenate([np.random.multinomial(E[t][x],theta[x]/(theta[x].sum()+10**-12)).reshape(1,len(N)) for x in range(len(N))],axis=0)
I_edge = np.concatenate([np.random.multinomial(I[t][x],theta[x]/(theta[x].sum()+10**-12)).reshape(1,len(N)) for x in range(len(N))],axis=0)
R_edge = np.concatenate([np.random.multinomial(R[t][x],theta[x]/(theta[x].sum()+10**-12)).reshape(1,len(N)) for x in range(len(N))],axis=0)
V_edge = np.concatenate([np.random.multinomial(V[t][x],theta[x]/(theta[x].sum()+10**-12)).reshape(1,len(N)) for x in range(len(N))],axis=0)
N_edge = S_edge + E_edge + I_edge + R_edge + V_edge
N_eff = N_edge.sum(axis=0)
I_eff = I_edge.sum(axis=0)
beta_j_eff = np.nan_to_num(params['beta'][:,t]*(I_eff/N_eff))
actual_SE = np.concatenate([np.random.binomial(S_edge[:,x],beta_j_eff[x]).reshape(len(N),1) for x in range(len(N))],axis=1).sum(axis=1)
actual_EI = np.random.binomial(E[t],params['alpha'])
actual_IR = np.random.binomial(I[t],params['gamma'])
actual_RS = np.random.binomial(R[t],params['delta'])
### Update to include presymptomatic and asymptomatic terms
S[t+1] = S[t] - actual_SE + actual_RS
E[t+1] = E[t] + actual_SE - actual_EI
I[t+1] = I[t] + actual_EI - actual_IR
R[t+1] = R[t] + actual_IR - actual_RS
V[t+1] = V[t]
else:
## vaccination for day t
actual_vax = np.minimum(vaxs[t]*params['vaxeff'],S[t])
S[t] = S[t] - actual_vax
V[t] = V[t] + actual_vax
N = patch_df.pops.values
## Computing force of infection
if configs['Model'] == 'Mobility':
N_eff = theta.T.dot(N)
I_eff = theta.T.dot(I[t])
E_eff = theta.T.dot(E[t])
beta_j_eff = np.nan_to_num(np.multiply(np.divide(I_eff,N_eff),params['beta'][:,t]*((1-params['kappa'])*(1-params['symprob']) + params['symprob']))) ## force of infection from symp/asymptomatic individuals
E_beta_j_eff = np.nan_to_num(np.multiply(np.divide(E_eff,N_eff),params['beta'][:,t]*(1-params['epsilon']))) ##force of infection from presymptomatic individuals
inf_force = theta.dot(beta_j_eff+E_beta_j_eff)
elif configs['Model'] == 'Force':
beta_j_eff = np.nan_to_num(np.multiply(np.divide(I[t],N),params['beta'][:,t]))
inf_force = theta.T.dot(beta_j_eff)
## New exposures during day t
new_inf[t] = np.multiply(inf_force,S[t])
### Update to include presymptomatic and asymptomatic terms
S[t+1] = S[t] - new_inf[t] + np.multiply(params['delta'],R[t])
E[t+1] = new_inf[t] + np.multiply(1 - params['alpha'],E[t])
I[t+1] = np.multiply(params['alpha'],E[t]) + np.multiply(1 - params['gamma'],I[t])
R[t+1] = np.multiply(params['gamma'],I[t]) + np.multiply(1 - params['delta'],R[t])
V[t+1] = V[t]
def epicurves_todf(configs,params,patch_df,State_Array):
S,E,I,R,V,new_inf = State_Array ## Aliases for the State Array
out_df = pd.DataFrame(index=patch_df.id.values,columns = range(int(configs['Duration'])),data=new_inf[:-1,:].T)
if configs['OutputFormat']=='Whole':
out_df = out_df.round().astype(int)
return out_df
def write_epicurves(configs,params,patch_df,State_Array,write_epi,return_epi):
out_df = epicurves_todf(configs,params,patch_df,State_Array)
if (write_epi==False)&(return_epi==False):
return out_df.sum().sum()
else:
if write_epi==True:
out_df.to_csv(configs['OutputFile'],header=None,sep=' ')
if return_epi==True:
return out_df
return
def run_disease_simulation(configs,patch_df=None,params=None,Theta=None,seeds=None,vaxs=None,return_epi=False,write_epi=False,return_full=False):
try:
handler = logging.FileHandler(configs['LogFile'], mode='w')
for hdlr in logger.handlers[:]: # remove the existing file handlers
if isinstance(hdlr,logger.FileHander):
logger.removeHandler(hdlr)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
except:
handler = logging.NullHandler()
logger.addHandler(handler)
logger.info('Starting PatchSim')
start = time.time()
if configs['Model'] not in ['Mobility','Force']:
logger.info('Invalid Model for PatchSim')
logger.removeHandler(handler)
return
else:
logger.info('Operating PatchSim under {} Model'.format(configs['Model']))
if patch_df is None:
patch_df = load_patch(configs)
if params is None:
params = load_params(configs,patch_df)
if Theta is None:
Theta = load_Theta(configs, patch_df)
if seeds is None:
seeds = load_seed(configs,params,patch_df)
if vaxs is None:
vaxs = load_vax(configs,params,patch_df)
logger.info('Initializing simulation run...')
if 'RandomSeed' in configs.keys():
np.random.seed(int(configs['RandomSeed']))
stoch = True
logger.info('Found RandomSeed. Running in stochastic mode...')
else:
stoch = False
logger.info('No RandomSeed found. Running in deterministic mode...')
dim = 5+1 ##Number of states (SEIRV) + One for tracking new infections
if stoch:
State_Array = np.ndarray((dim,params['T']+1,len(patch_df))).astype(int)
else:
State_Array = np.ndarray((dim,params['T']+1,len(patch_df)))
State_Array.fill(0)
S,E,I,R,V,new_inf = State_Array ## Aliases for the State Array
if configs['LoadState'] =='True':
State_Array[:,0,:] = np.load(configs['LoadFile'])
else:
S[0,:] = patch_df.pops.values
ref = datetime.strptime('Jan 1 2017', '%b %d %Y') ##is a Sunday
for t in range(params['T']):
curr_date = ref + timedelta(days=t+int(configs['StartDate']))
curr_week = int(curr_date.strftime("%U"))
curr_month = int(curr_date.strftime("%m"))
if configs['NetworkType']=='Static':
patchsim_step(State_Array,patch_df,configs,params,Theta[0],seeds,vaxs,t,stoch)
if configs['NetworkType']=='Weekly':
patchsim_step(State_Array,patch_df,configs,params,Theta[curr_week-1],seeds,vaxs,t,stoch)
if configs['NetworkType']=='Monthly':
patchsim_step(State_Array,patch_df,configs,params,Theta[curr_month-1],seeds,vaxs,t,stoch)
if configs['SaveState'] == 'True':
logger.info('Saving StateArray to File')
np.save(configs['SaveFile'],State_Array[:,-1,:])
elapsed = time.time() - start
logger.info('Simulation complete. Time elapsed: {} seconds.'.format(elapsed))
logger.removeHandler(handler)
# if (return_full==True): ##Use for debugging
# return State_Array
return write_epicurves(configs,params,patch_df,State_Array,write_epi,return_epi)