-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinalmodel_matern52_novariables.stan
114 lines (112 loc) · 3.77 KB
/
finalmodel_matern52_novariables.stan
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
functions {
/* compute a latent Gaussian process
* Args:
* x: array of continuous predictor values
* sdgp: marginal SD parameter
* lscale: length-scale parameter
* zgp: vector of independent standard normal variables
* Returns:
* a vector to be added to the linear predictor
*/
vector gp(vector[] x, real sdgp, vector lscale, vector zgp) {
int Dls = rows(lscale);
int N = size(x);
matrix[N, N] cov;
if (Dls == 1) {
// one dimensional or isotropic GP
cov = gp_matern52_cov(x, sdgp, lscale[1]);
} else {
// multi-dimensional non-isotropic GP
cov = gp_matern52_cov(x[, 1], sdgp, lscale[1]);
for (d in 2:Dls) {
cov = cov .* gp_matern52_cov(x[, d], 1, lscale[d]);
}
}
for (n in 1:N) {
// deal with numerical non-positive-definiteness
cov[n, n] += 1e-8;
}
return cholesky_decompose(cov) * zgp;
}
/* Spectral density function of a Gaussian process
* Args:
* x: array of numeric values of dimension NB x D
* sdgp: marginal SD parameter
* lscale: vector of length-scale parameters
* Returns:
* numeric values of the function evaluated at 'x'
*/
vector spd_cov_exp_quad(vector[] x, real sdgp, vector lscale) {
int NB = dims(x)[1];
int D = dims(x)[2];
int Dls = rows(lscale);
vector[NB] out;
if (Dls == 1) {
// one dimensional or isotropic GP
real constant = square(sdgp) * (sqrt(2 * pi()) * lscale[1])^D;
real neg_half_lscale2 = -0.5 * square(lscale[1]);
for (m in 1:NB) {
out[m] = constant * exp(neg_half_lscale2 * dot_self(x[m]));
}
} else {
// multi-dimensional non-isotropic GP
real constant = square(sdgp) * sqrt(2 * pi())^D * prod(lscale);
vector[Dls] neg_half_lscale2 = -0.5 * square(lscale);
for (m in 1:NB) {
out[m] = constant * exp(dot_product(neg_half_lscale2, square(x[m])));
}
}
return out;
}
/* compute an approximate latent Gaussian process
* Args:
* X: Matrix of Laplacian eigen functions at the covariate values
* sdgp: marginal SD parameter
* lscale: vector of length-scale parameters
* zgp: vector of independent standard normal variables
* slambda: square root of the Laplacian eigen values
* Returns:
* a vector to be added to the linear predictor
*/
vector gpa(matrix X, real sdgp, vector lscale, vector zgp, vector[] slambda) {
vector[cols(X)] diag_spd = sqrt(spd_cov_exp_quad(slambda, sdgp, lscale));
return X * (diag_spd .* zgp);
}
}
data {
int<lower=1> N; // number of observations
int Y[N]; // response variable
// data related to GPs
int<lower=1> Kgp_1; // number of sub-GPs (equal to 1 unless 'by' was used)
int<lower=1> Dgp_1; // GP dimension
vector[Dgp_1] Xgp_1[N]; // covariates of the GP
int prior_only; // should the likelihood be ignored?
}
transformed data {
}
parameters {
real Intercept; // temporary intercept for centered predictors
vector<lower=0>[Kgp_1] sdgp_1; // GP standard deviation parameters
vector<lower=0>[1] lscale_1[Kgp_1]; // GP length-scale parameters
vector[N] zgp_1; // latent variables of the GP
}
transformed parameters {
}
model {
// initialize linear predictor term
vector[N] mu = Intercept + rep_vector(0, N) + gp(Xgp_1, sdgp_1[1], lscale_1[1], zgp_1);
// priors including all constants
target += student_t_lpdf(Intercept | 3, 0, 10);
target += student_t_lpdf(sdgp_1 | 3, 0, 10)
- 1 * student_t_lccdf(0 | 3, 0, 10);
target += inv_gamma_lpdf(lscale_1[1][1] | 0.664579, 0.000839);
target += normal_lpdf(zgp_1 | 0, 1);
// likelihood including all constants
if (!prior_only) {
target += bernoulli_logit_lpmf(Y | mu);
}
}
generated quantities {
// actual population-level intercept
real b_Intercept = Intercept;
}