-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgp_exponential_cov.hpp
280 lines (250 loc) · 9.26 KB
/
gp_exponential_cov.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#ifndef STAN_MATH_PRIM_FUN_GP_EXPONENTIAL_COV_HPP
#define STAN_MATH_PRIM_FUN_GP_EXPONENTIAL_COV_HPP
#include <stan/math/prim/meta.hpp>
#include <stan/math/prim/err.hpp>
#include <stan/math/prim/fun/distance.hpp>
#include <stan/math/prim/fun/divide_columns.hpp>
#include <stan/math/prim/fun/Eigen.hpp>
#include <stan/math/prim/fun/exp.hpp>
#include <stan/math/prim/fun/size.hpp>
#include <stan/math/prim/fun/square.hpp>
#include <cmath>
#include <vector>
namespace stan {
namespace math {
/**
* Returns a Matern exponential covariance Matrix.
*
* \f[ k(x, x') = \sigma^2 exp(-\frac{d(x, x')^2}{2l^2}) \f]
*
* where d(x, x') is the Euclidean distance.
*
* @tparam T_x type for each scalar
* @tparam T_s type of parameter sigma
* @tparam T_l type of parameter length scale
*
* @param x std::vector of scalars that can be used in stan::math::distance
* @param sigma standard deviation or magnitude
* @param length_scale length scale
* @throw std::domain error if sigma <= 0, l <= 0, or x is nan or inf
*
*/
template <typename T_x, typename T_s, typename T_l>
inline typename Eigen::Matrix<return_type_t<T_x, T_s, T_l>, Eigen::Dynamic,
Eigen::Dynamic>
gp_exponential_cov(const std::vector<T_x> &x, const T_s &sigma,
const T_l &length_scale) {
using std::exp;
using std::pow;
size_t x_size = stan::math::size(x);
Eigen::Matrix<return_type_t<T_x, T_s, T_l>, Eigen::Dynamic, Eigen::Dynamic>
cov(x_size, x_size);
if (x_size == 0) {
return cov;
}
const char *function = "gp_exponential_cov";
size_t x_obs_size = stan::math::size(x[0]);
for (size_t i = 0; i < x_size; ++i) {
check_size_match(function, "x row", x_obs_size, "x's other row",
stan::math::size(x[i]));
}
for (size_t i = 0; i < x_size; ++i) {
check_not_nan(function, "x", x[i]);
}
check_positive_finite(function, "magnitude", sigma);
check_positive_finite(function, "length scale", length_scale);
T_s sigma_sq = square(sigma);
T_l neg_inv_l = -1.0 / length_scale;
for (size_t i = 0; i < x_size; ++i) {
cov(i, i) = sigma_sq;
for (size_t j = i + 1; j < x_size; ++j) {
cov(i, j) = sigma_sq * exp(neg_inv_l * distance(x[i], x[j]));
cov(j, i) = cov(i, j);
}
}
return cov;
}
/**
* Returns a Matern exponential covariance matrix.
*
* \f[ k(x, x') = \sigma^2 exp(-\sum_{k=1}^K\frac{d(x, x')}{l_k}) \f]
*
* where d(x, x') is the Euclidean distance.
*
* @tparam T_x type for each scalar
* @tparam T_s type for each parameter sigma
* @tparam T_l type for each length scale parameter
*
* @param x std::vector of Eigen::vectors of scalars
* @param sigma standard deviation that can be used in stan::math::square
* @param length_scale std::vector of length scales
* @throw std::domain error if sigma <= 0, l <= 0, or x is nan or inf
*/
template <typename T_x, typename T_s, typename T_l>
inline typename Eigen::Matrix<return_type_t<T_x, T_s, T_l>, Eigen::Dynamic,
Eigen::Dynamic>
gp_exponential_cov(const std::vector<Eigen::Matrix<T_x, -1, 1>> &x,
const T_s &sigma, const std::vector<T_l> &length_scale) {
using std::exp;
using std::pow;
size_t x_size = stan::math::size(x);
Eigen::Matrix<return_type_t<T_x, T_s, T_l>, Eigen::Dynamic, Eigen::Dynamic>
cov(x_size, x_size);
if (x_size == 0) {
return cov;
}
const char *function = "gp_exponential_cov";
for (size_t n = 0; n < x_size; ++n) {
check_not_nan(function, "x", x[n]);
}
check_positive_finite(function, "magnitude", sigma);
check_positive_finite(function, "length scale", length_scale);
size_t l_size = length_scale.size();
check_size_match(function, "x dimension", x[0].size(),
"number of length scales", l_size);
std::vector<Eigen::Matrix<return_type_t<T_x, T_l>, -1, 1>> x_new
= divide_columns(x, length_scale);
T_s sigma_sq = square(sigma);
for (size_t i = 0; i < x_size; ++i) {
cov(i, i) = sigma_sq;
for (size_t j = i + 1; j < x_size; ++j) {
return_type_t<T_x, T_l> dist = distance(x_new[i], x_new[j]);
cov(i, j) = sigma_sq * exp(-dist);
cov(j, i) = cov(i, j);
}
}
return cov;
}
/**
* Returns a Matern exponential cross covariance matrix
*
* \f[ k(x, x') = \sigma^2 exp(-\frac{d(x, x')}{l}) \f]
*
* where d(x, x') is the Euclidean distance
* This function is for the cross covariance matrix needed to
* compute the posterior predictive distribution
*
* @tparam T_x1 first type of scalars contained in vector x1
* @tparam T_x2 second type of scalars contained in vector x2
* @tparam T_s type of parameter sigma, marginal standard deviation
* @tparam T_l type of parameter length scale
*
* @param x1 std::vector of scalars that can be used in squared_distance
* @param x2 std::vector of scalars that can be used in squared_distance
* @param length_scale length scale
* @param sigma standard deviation that can be used in stan::math::square
* @throw std::domain error if sigma <= 0, l <= 0, or x1, x2 are nan or inf
*/
template <typename T_x1, typename T_x2, typename T_s, typename T_l>
inline typename Eigen::Matrix<return_type_t<T_x1, T_x2, T_s, T_l>,
Eigen::Dynamic, Eigen::Dynamic>
gp_exponential_cov(const std::vector<T_x1> &x1, const std::vector<T_x2> &x2,
const T_s &sigma, const T_l &length_scale) {
using std::exp;
using std::pow;
size_t x1_size = stan::math::size(x1);
size_t x2_size = stan::math::size(x2);
Eigen::Matrix<return_type_t<T_x1, T_x2, T_s, T_l>, Eigen::Dynamic,
Eigen::Dynamic>
cov(x1_size, x2_size);
if (x1_size == 0 || x2_size == 0) {
return cov;
}
const char *function = "gp_exponential_cov";
size_t x1_obs_size = stan::math::size(x1[0]);
for (size_t i = 0; i < x1_size; ++i) {
check_size_match(function, "x1's row", x1_obs_size, "x1's other row",
stan::math::size(x1[i]));
}
for (size_t i = 0; i < x2_size; ++i) {
check_size_match(function, "x1's row", x1_obs_size, "x2's other row",
stan::math::size(x2[i]));
}
for (size_t n = 0; n < x1_size; ++n) {
check_not_nan(function, "x1", x1[n]);
}
for (size_t n = 0; n < x2_size; ++n) {
check_not_nan(function, "x2", x2[n]);
}
check_positive_finite(function, "magnitude", sigma);
check_positive_finite(function, "length scale", length_scale);
T_s sigma_sq = square(sigma);
T_l neg_inv_l = -1.0 / length_scale;
for (size_t i = 0; i < x1_size; ++i) {
for (size_t j = 0; j < x2_size; ++j) {
cov(i, j) = sigma_sq * exp(neg_inv_l * distance(x1[i], x2[j]));
}
}
return cov;
}
/**
* Returns a Matern exponential cross covariance matrix
*
* \f[ k(x, x') = \sigma^2 exp(-\sum_{k=1}^K\frac{d(x, x')}{l_k}) \f]
*
* where \f$d(x, x')\f$ is the Euclidean distance
*
* This function is for the cross covariance matrix needed
* to compute the posterior predictive density.
*
* @tparam T_x1 first type of std::vector of scalars
* @tparam T_x2 second type of std::vector of scalars
* @tparam T_s type of parameter sigma, marginal standard deviation
* @tparam T_l type of parameter length scale
*
* @param x1 std::vector of Eigen vectors of scalars
* @param x2 std::vector of Eigen vectors of scalars
* @param length_scale parameter length scale
* @param sigma standard deviation that can be used in stan::math::square
* @throw std::domain error if sigma <= 0, l <= 0, or x1, x2 are nan or inf
*/
template <typename T_x1, typename T_x2, typename T_s, typename T_l>
inline typename Eigen::Matrix<return_type_t<T_x1, T_x2, T_s, T_l>,
Eigen::Dynamic, Eigen::Dynamic>
gp_exponential_cov(const std::vector<Eigen::Matrix<T_x1, -1, 1>> &x1,
const std::vector<Eigen::Matrix<T_x2, -1, 1>> &x2,
const T_s &sigma, const std::vector<T_l> &length_scale) {
using std::exp;
using std::pow;
size_t x1_size = stan::math::size(x1);
size_t x2_size = stan::math::size(x2);
size_t l_size = stan::math::size(length_scale);
Eigen::Matrix<return_type_t<T_x1, T_x2, T_s, T_l>, Eigen::Dynamic,
Eigen::Dynamic>
cov(x1_size, x2_size);
if (x1_size == 0 || x2_size == 0) {
return cov;
}
const char *function = "gp_exponential_cov";
for (size_t n = 0; n < x1_size; ++n) {
check_not_nan(function, "x1", x1[n]);
}
for (size_t n = 0; n < x2_size; ++n) {
check_not_nan(function, "x2", x2[n]);
}
check_positive_finite(function, "magnitude", sigma);
check_positive_finite(function, "length scale", length_scale);
for (size_t i = 0; i < x1_size; ++i) {
check_size_match(function, "x1's row", stan::math::size(x1[i]),
"number of length scales", l_size);
}
for (size_t i = 0; i < x2_size; ++i) {
check_size_match(function, "x2's row", stan::math::size(x2[i]),
"number of length scales", l_size);
}
T_s sigma_sq = square(sigma);
T_l temp;
std::vector<Eigen::Matrix<return_type_t<T_x1, T_l>, -1, 1>> x1_new
= divide_columns(x1, length_scale);
std::vector<Eigen::Matrix<return_type_t<T_x2, T_l>, -1, 1>> x2_new
= divide_columns(x2, length_scale);
for (size_t i = 0; i < x1_size; ++i) {
for (size_t j = 0; j < x2_size; ++j) {
cov(i, j) = sigma_sq * exp(-distance(x1_new[i], x2_new[j]));
}
}
return cov;
}
} // namespace math
} // namespace stan
#endif