forked from zeux/meshoptimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
animation.cpp
336 lines (269 loc) · 9.08 KB
/
animation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
// This file is part of gltfpack; see gltfpack.h for version/license details
#include "gltfpack.h"
#include <algorithm>
#include <float.h>
#include <math.h>
#include <string.h>
static float getDelta(const Attr& l, const Attr& r, cgltf_animation_path_type type)
{
switch (type)
{
case cgltf_animation_path_type_translation:
return std::max(std::max(fabsf(l.f[0] - r.f[0]), fabsf(l.f[1] - r.f[1])), fabsf(l.f[2] - r.f[2]));
case cgltf_animation_path_type_rotation:
return acosf(std::min(1.f, fabsf(l.f[0] * r.f[0] + l.f[1] * r.f[1] + l.f[2] * r.f[2] + l.f[3] * r.f[3])));
case cgltf_animation_path_type_scale:
return std::max(std::max(fabsf(l.f[0] / r.f[0] - 1), fabsf(l.f[1] / r.f[1] - 1)), fabsf(l.f[2] / r.f[2] - 1));
case cgltf_animation_path_type_weights:
return fabsf(l.f[0] - r.f[0]);
default:
assert(!"Uknown animation path");
return 0;
}
}
static float getDeltaTolerance(cgltf_animation_path_type type)
{
switch (type)
{
case cgltf_animation_path_type_translation:
return 0.0001f; // 0.1mm linear
case cgltf_animation_path_type_rotation:
return 0.1f * (3.1415926f / 180.f); // 0.1 degrees
case cgltf_animation_path_type_scale:
return 0.001f; // 0.1% ratio
case cgltf_animation_path_type_weights:
return 0.001f; // 0.1% linear
default:
assert(!"Uknown animation path");
return 0;
}
}
static Attr interpolateLinear(const Attr& l, const Attr& r, float t, cgltf_animation_path_type type)
{
if (type == cgltf_animation_path_type_rotation)
{
// Approximating slerp, https://zeux.io/2015/07/23/approximating-slerp/
// We also handle quaternion double-cover
float ca = l.f[0] * r.f[0] + l.f[1] * r.f[1] + l.f[2] * r.f[2] + l.f[3] * r.f[3];
float d = fabsf(ca);
float A = 1.0904f + d * (-3.2452f + d * (3.55645f - d * 1.43519f));
float B = 0.848013f + d * (-1.06021f + d * 0.215638f);
float k = A * (t - 0.5f) * (t - 0.5f) + B;
float ot = t + t * (t - 0.5f) * (t - 1) * k;
float t0 = 1 - ot;
float t1 = ca > 0 ? ot : -ot;
Attr lerp = {{
l.f[0] * t0 + r.f[0] * t1,
l.f[1] * t0 + r.f[1] * t1,
l.f[2] * t0 + r.f[2] * t1,
l.f[3] * t0 + r.f[3] * t1,
}};
float len = sqrtf(lerp.f[0] * lerp.f[0] + lerp.f[1] * lerp.f[1] + lerp.f[2] * lerp.f[2] + lerp.f[3] * lerp.f[3]);
if (len > 0.f)
{
lerp.f[0] /= len;
lerp.f[1] /= len;
lerp.f[2] /= len;
lerp.f[3] /= len;
}
return lerp;
}
else
{
Attr lerp = {{
l.f[0] * (1 - t) + r.f[0] * t,
l.f[1] * (1 - t) + r.f[1] * t,
l.f[2] * (1 - t) + r.f[2] * t,
l.f[3] * (1 - t) + r.f[3] * t,
}};
return lerp;
}
}
static Attr interpolateHermite(const Attr& v0, const Attr& t0, const Attr& v1, const Attr& t1, float t, float dt, cgltf_animation_path_type type)
{
float s0 = 1 + t * t * (2 * t - 3);
float s1 = t + t * t * (t - 2);
float s2 = 1 - s0;
float s3 = t * t * (t - 1);
float ts1 = dt * s1;
float ts3 = dt * s3;
Attr lerp = {{
s0 * v0.f[0] + ts1 * t0.f[0] + s2 * v1.f[0] + ts3 * t1.f[0],
s0 * v0.f[1] + ts1 * t0.f[1] + s2 * v1.f[1] + ts3 * t1.f[1],
s0 * v0.f[2] + ts1 * t0.f[2] + s2 * v1.f[2] + ts3 * t1.f[2],
s0 * v0.f[3] + ts1 * t0.f[3] + s2 * v1.f[3] + ts3 * t1.f[3],
}};
if (type == cgltf_animation_path_type_rotation)
{
float len = sqrtf(lerp.f[0] * lerp.f[0] + lerp.f[1] * lerp.f[1] + lerp.f[2] * lerp.f[2] + lerp.f[3] * lerp.f[3]);
if (len > 0.f)
{
lerp.f[0] /= len;
lerp.f[1] /= len;
lerp.f[2] /= len;
lerp.f[3] /= len;
}
}
return lerp;
}
static void resampleKeyframes(std::vector<Attr>& data, const std::vector<float>& input, const std::vector<Attr>& output, cgltf_animation_path_type type, cgltf_interpolation_type interpolation, size_t components, int frames, float mint, int freq)
{
size_t cursor = 0;
for (int i = 0; i < frames; ++i)
{
float time = mint + float(i) / freq;
while (cursor + 1 < input.size())
{
float next_time = input[cursor + 1];
if (next_time > time)
break;
cursor++;
}
if (cursor + 1 < input.size())
{
float cursor_time = input[cursor + 0];
float next_time = input[cursor + 1];
float range = next_time - cursor_time;
float inv_range = (range == 0.f) ? 0.f : 1.f / (next_time - cursor_time);
float t = std::max(0.f, std::min(1.f, (time - cursor_time) * inv_range));
for (size_t j = 0; j < components; ++j)
{
switch (interpolation)
{
case cgltf_interpolation_type_linear:
{
const Attr& v0 = output[(cursor + 0) * components + j];
const Attr& v1 = output[(cursor + 1) * components + j];
data.push_back(interpolateLinear(v0, v1, t, type));
}
break;
case cgltf_interpolation_type_step:
{
const Attr& v = output[cursor * components + j];
data.push_back(v);
}
break;
case cgltf_interpolation_type_cubic_spline:
{
const Attr& v0 = output[(cursor * 3 + 1) * components + j];
const Attr& b0 = output[(cursor * 3 + 2) * components + j];
const Attr& a1 = output[(cursor * 3 + 3) * components + j];
const Attr& v1 = output[(cursor * 3 + 4) * components + j];
data.push_back(interpolateHermite(v0, b0, v1, a1, t, range, type));
}
break;
default:
assert(!"Unknown interpolation type");
}
}
}
else
{
size_t offset = (interpolation == cgltf_interpolation_type_cubic_spline) ? cursor * 3 + 1 : cursor;
for (size_t j = 0; j < components; ++j)
{
const Attr& v = output[offset * components + j];
data.push_back(v);
}
}
}
}
static float getMaxDelta(const std::vector<Attr>& data, cgltf_animation_path_type type, int frames, const Attr* value, size_t components)
{
assert(data.size() == frames * components);
float result = 0;
for (int i = 0; i < frames; ++i)
{
for (size_t j = 0; j < components; ++j)
{
float delta = getDelta(value[j], data[i * components + j], type);
result = (result < delta) ? delta : result;
}
}
return result;
}
static void getBaseTransform(Attr* result, size_t components, cgltf_animation_path_type type, cgltf_node* node)
{
switch (type)
{
case cgltf_animation_path_type_translation:
memcpy(result->f, node->translation, 3 * sizeof(float));
break;
case cgltf_animation_path_type_rotation:
memcpy(result->f, node->rotation, 4 * sizeof(float));
break;
case cgltf_animation_path_type_scale:
memcpy(result->f, node->scale, 3 * sizeof(float));
break;
case cgltf_animation_path_type_weights:
if (node->weights_count)
{
assert(node->weights_count == components);
memcpy(result->f, node->weights, components * sizeof(float));
}
else if (node->mesh && node->mesh->weights_count)
{
assert(node->mesh->weights_count == components);
memcpy(result->f, node->mesh->weights, components * sizeof(float));
}
break;
default:
assert(!"Unknown animation path");
}
}
static float getWorldScale(cgltf_node* node)
{
float transform[16];
cgltf_node_transform_world(node, transform);
// 3x3 determinant computes scale^3
float a0 = transform[5] * transform[10] - transform[6] * transform[9];
float a1 = transform[4] * transform[10] - transform[6] * transform[8];
float a2 = transform[4] * transform[9] - transform[5] * transform[8];
float det = transform[0] * a0 - transform[1] * a1 + transform[2] * a2;
return powf(fabsf(det), 1.f / 3.f);
}
void processAnimation(Animation& animation, const Settings& settings)
{
float mint = FLT_MAX, maxt = 0;
for (size_t i = 0; i < animation.tracks.size(); ++i)
{
const Track& track = animation.tracks[i];
assert(!track.time.empty());
mint = std::min(mint, track.time.front());
maxt = std::max(maxt, track.time.back());
}
mint = std::min(mint, maxt);
// round the number of frames to nearest but favor the "up" direction
// this means that at 10 Hz resampling, we will try to preserve the last frame <10ms
// but if the last frame is <2ms we favor just removing this data
int frames = 1 + int((maxt - mint) * settings.anim_freq + 0.8f);
animation.start = mint;
animation.frames = frames;
std::vector<Attr> base;
for (size_t i = 0; i < animation.tracks.size(); ++i)
{
Track& track = animation.tracks[i];
std::vector<Attr> result;
resampleKeyframes(result, track.time, track.data, track.path, track.interpolation, track.components, frames, mint, settings.anim_freq);
track.time.clear();
track.data.swap(result);
float tolerance = getDeltaTolerance(track.path);
// translation tracks use world space tolerance; in the future, we should compute all errors as linear using hierarchy
if (track.node && track.path == cgltf_animation_path_type_translation)
{
float scale = getWorldScale(track.node);
tolerance /= scale == 0.f ? 1.f : scale;
}
float deviation = getMaxDelta(track.data, track.path, frames, &track.data[0], track.components);
if (deviation <= tolerance)
{
// track is constant (equal to first keyframe), we only need the first keyframe
track.constant = true;
track.data.resize(track.components);
// track.dummy is true iff track redundantly sets up the value to be equal to default node transform
base.resize(track.components);
getBaseTransform(&base[0], track.components, track.path, track.node);
track.dummy = getMaxDelta(track.data, track.path, 1, &base[0], track.components) <= tolerance;
}
}
}