-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsmp.py
602 lines (470 loc) · 20.9 KB
/
smp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import numpy as np
import astropy.table as tb
import astropy.io.fits as pf
import compress_pickle as cp
import scipy.sparse as sp
import piff
from pixmappy import DESMaps, Gnomonic
from scipy.linalg import block_diag, lstsq
from numpy.linalg import LinAlgError
gain_shape = np.zeros((4096, 2048))
def gain(expnum, ccdnum, x, y, stampsize, gain_dict):
'''
Uses the gain table to construct a stamp that is reproduces the gain in the original image, and
then cuts the image out to reproduce the stamp
'''
from astropy.nddata import Cutout2D
gain_exp = gain_dict[expnum][ccdnum]
gain_image = gain_shape
if ccdnum < 32:
gain_image[:,:1024] = gain_exp['B']
gain_image[:,1024:] = gain_exp['A']
else:
gain_image[:,:1024] = gain_exp['A']
gain_image[:,1024:] = gain_exp['B']
gain_cut = Cutout2D(gain_image, (x,y), stampsize, mode='partial', fill_value=0)
return gain_cut.data
def construct_psf_background(ra, dec, wcs, psf, x_loc, y_loc, stampsize, flatten = True):
'''
Constructs the background model using PIFF's PSFs around a certain image (x,y) location and a given array of RA and DECs.
The pixel coordinates are found using pixmappy's WCSs
stampsize determines how large the image will be (eg stampsize = 30 means a 30x30 image).
flatten decides if the image should be flattened (preferred) or not
'''
x, y = wcs.toPix(np.array(ra), np.array(dec), c = 0.61)
psfs = np.zeros((stampsize*stampsize, len(x)))
k = 0
for i,j in zip(x,y):
d = psf.draw(x_loc, y_loc, stamp_size = stampsize, center = (i,j))
if flatten:
d = np.flip(d.array).flatten()
#d = d.reshape((1,stampsize**2,))
#psfs.append(np.array([d]).T)
psfs[:,k] = d
k+=1
else:
psfs.append(d.array)
return psfs
def construct_psf_source(x, y, psf, stampsize=30, x_center = None, y_center = None):
'''
Constructs the PIFF PSF around the point source (x,y) location, allowing for some offset from the center
(if so, specify x_center and y_center)
'''
if x_center is None:
x_center = x
y_center = y
d = psf.draw(x_center, y_center, stamp_size = stampsize, center=(x,y))
return d.array.flatten()
def local_grid(ra_center, dec_center, step, npoints):
'''
Generates a local grid around a RA-Dec center, choosing step size and number of points
'''
x = np.linspace(-step*npoints/2, step*npoints/2, npoints)
y = np.linspace(-step*npoints/2, step*npoints/2, npoints)
xx, yy = np.meshgrid(x, y)
xx = xx.flatten()
yy = yy.flatten()
ra_grid, dec_grid = Gnomonic(ra_center, dec_center).toSky(xx, yy)
return ra_grid, dec_grid
class Detection:
'''
Main class for SMP. Requires RA and Dec for the detection, an exposure and CCD numbers for bookkeeping and
zero-point retrieval, a band (for finding extra exposures) and an optional color (for astrometry) and name for the
detection
'''
def __init__(self, ra, dec, expnum, ccdnum, band, color = 0.61, name = ''):
'''
Constructor class
'''
self.ra = ra
self.dec = dec
self.expnum = expnum
self.ccdnum = ccdnum
self.band = band
self.color = color
self.name = name
def write(self, filename):
'''
Saves a pickle file (with a given filename) for the detection, can be reloaded back with the read function
'''
cp.dump(self, filename)
@staticmethod
def read(filename):
'''
Loads a previously saved detection. Usage:
det = Detection.read(filename)
'''
return cp.load(filename)
def findAllExposures(self, survey, return_list = False, reduce_band = True):
'''
Requires a list of DECamExposures or DESExposures from `DESTNOSIM`,
returns all exposures that touch the point.
If return_list == True, returns this as a list, otherwise saves this
inside det.exposures
If reduce_band == True, drops all exposures from different bands (that is,
keeps only the same band as the detection)
'''
from pixmappy import Gnomonic
x, y = Gnomonic(self.ra, self.dec).toXY(np.array(survey.ra), np.array(survey.dec))
#note that, at RA0, DEC0, x,y = 0
dist = np.sqrt(x**2 + y**2)
close = np.where(dist < 1.5)
ra_arr = np.array([self.ra])
dec_arr = np.array([self.dec])
ccdlist = tb.Table(names=('EXPNUM', 'CCDNUM', 'BAND'), dtype=('i8', 'i4', 'str'))
ccdlist.add_row([self.expnum, self.ccdnum, self.band])
for i,j in zip(survey.expnum[close], survey.band[close]):
ccd = survey[i].checkInCCDFast(ra_arr, dec_arr, ccdsize = 0.149931)[1]
if ccd != None:
ccdlist.add_row([i,ccd,j])
ccdlist.sort('EXPNUM')
ccdlist['DETECTED'] = False
ccdlist['DETECTED'][ccdlist['EXPNUM'] == self.expnum] = True
self.exposures = tb.unique(ccdlist)
if reduce_band:
self.exposures = self.exposures[self.exposures['BAND'] == self.band]
self.exposures.sort('DETECTED')
if return_list:
return self.exposures
def findPixelCoords(self, expnum = None, ccdnum = None, pmc = DESMaps(), return_wcs = False, color = 0.61):
'''
Finds the pixel coordinates of the detection using pixmappy (data provided using the pmc argument)
for a given expopsure/ccdnum pair. Can return the wcs for usage in other functions
Color (g-i) is optional
'''
if expnum is None:
expnum = self.expnum
ccdnum = self.ccdnum
wcs = pmc.getDESWCS(expnum, int(ccdnum))
x, y = wcs.toPix(np.array([self.ra]), np.array([self.dec]), c = color)
if return_wcs:
return x, y, wcs
else:
return x, y
def constructImages(self, zeropoints, path, size = 30, background = False):
'''
Constructs the array of images in the format required for the linear algebra operations
- zeropoints is a dictionary of ZP for each exposure/ccdnum, all exposures are brought to a common
zeropoint = 30.
- path provides the location of all FITS for the exposures, the stamps should be
names as {name}_EXPNUM.fits
- size is the size for the grid (size = 30 means 30x30 stamps)
- background applies some background subtraction routines developed for the comet analysis
'''
#will be used for gain corrections later on
self.zp = np.power(10, -(zeropoints[self.expnum][self.ccdnum] - 30)/2.5)
m = []
mask = []
wgt = []
bgflux = []
for i in self.exposures:
try:
image = pf.open(f"{path}/{self.name}_{i['EXPNUM']}.fits")
except OSError:
if i['DETECTED']:
print('No stamp for the detection!')
m.append(np.zeros(size*size))
mask.append(np.ones(size*size))
wgt.append(np.zeros(size*size))
continue
try:
zero = np.power(10, -(zeropoints[i['EXPNUM']][i['CCDNUM']] - 30)/2.5)
except:
zero = -99
if zero < 0:
zero = 0
im = image['SCI'].data * zero
bgarr = np.concatenate((im[0:size//10,0:size//10].flatten(), im[0:size,size//10:size].flatten(), im[size//10:size,0:size//10].flatten(), im[size//10:size,size//10:size].flatten()))
bgarr = bgarr[bgarr != 0]
if len(bgarr) == 0:
med = 0
bg = 0
else:
pc = np.percentile(bgarr, 84)
med = np.median(bgarr)
bgarr = bgarr[bgarr < pc]
bg = np.median(bgarr)
bgflux.append(bg)
if background:
im -= bg
m.append(im.flatten())
mask.append(image['MSK'].data.flatten())
w = zero**2/image['WGT'].data.flatten()
w[image['WGT'].data.flatten() == 0] = 0
wgt.append(w)
self.image = np.hstack(m)
self.mask = np.hstack(mask)
self.bgflux = bgflux
self.wgt = np.hstack(wgt)
self.invwgt = 1/self.wgt
self.invwgt[self.mask > 0] = 0
self.invwgt[self.wgt == 0] = 0
def constructPSFs(self, ra_grid, dec_grid, pmc = DESMaps(), size = 30, shift_x = 0, shift_y = 0, path = '', sparse = False):
'''
Constructs the PIFF PSFs for the detections, requires an array of RA and Decs (ra_grid, dec_grid), a pixmappy instance (pmc),
a stamp size, a potential offset in pixels for the center (shift_x,y), a path for the
PIFF files.
sparse turns on the sparse matrix solution (uses less memory and can be faster, but less stable)
'''
psf_matrix = []
for i in self.exposures:
try:
x_cen, y_cen, wcs = self.findPixelCoords(i['EXPNUM'], int(i['CCDNUM']), pmc = pmc, return_wcs=True, color = self.color)
psf = piff.PSF.read(f"{path}/{i['EXPNUM']}/{i['EXPNUM']}_{i['CCDNUM']}_piff.fits")
except (OSError, ValueError):
print(f"Missing {i['EXPNUM']} {i['CCDNUM']} psf")
psf_matrix.append(sp.csr_matrix(np.zeros((size * size, len(ra_grid)))))
continue
psf_matrix.append(sp.csr_matrix(construct_psf_background(ra_grid, dec_grid, wcs, psf, x_cen, y_cen, size, flatten=True)))
if sparse:
print('PSF matrix')
self.psf_matrix = sp.vstack(psf_matrix)
del psf_matrix
else:
self.psf_matrix = np.vstack(psf_matrix)
## Last PSF is the one for the detected exposure
self.x, self.y = self.findPixelCoords(pmc = pmc, color = self.color)
self.source_psf = piff.PSF.read(f'{path}/{self.expnum}/{self.expnum}_{self.ccdnum}_piff.fits')
self.psf_source = construct_psf_source(self.x + shift_x, self.y + shift_y, psf = self.source_psf, stampsize = size, x_center = self.x, y_center = self.y)
def constructDesignMatrix(self, size, sparse = False, background = True):
'''
Constructs the design matrix for the solution.
size is the stamp size, sparse turns on the sparse solution
background defines whether the background is being fit together with the image or not
'''
if not background:
ones = np.ones((size*size,1))
else:
ones = np.zeros((size*size, 1))
if sparse:
print('Background')
background = sp.block_diag(len(self.exposures) * [ones] )
else:
background = block_diag(*(len(self.exposures) * [ones]))
psf_zeros = np.zeros((self.psf_matrix.shape[0]))
psf_zeros[-size*size:] = self.psf_source
if sparse:
print('Design')
self.design = sp.hstack([self.psf_matrix, background, np.array([psf_zeros]).T], dtype='float64')
else:
#self.design = sp.csc_matrix(self.design)
self.design = np.column_stack([self.psf_matrix, background, psf_zeros])
def solvePhotometry(self, res = True, err = True, sparse = False):
'''
Solves the system for the flux as well as background sources
Solution is saved in det.X, the flux is the -1 entry in this array
- res: defines if the residuals should be computed
- err: defines if the errors should be computed (requires an expensive matrix inversion)
- sparse: turns on sparse routines. Less stable, possibly incompatible with `err`
'''
if sparse:
diag = sp.diags(np.sqrt(self.invwgt))
print('Product')
prod = diag.dot(self.design)
print('Solving')
self.X = sp.linalg.lsqr(prod, self.image*np.sqrt(self.invwgt))[0]
print('Solved')
else:
self.X = lstsq(np.diag(np.sqrt(self.invwgt)) @ self.design, self.image*np.sqrt(self.invwgt))[0]
self.flux = self.X[-1]
self.mag = -2.5*np.log10(self.flux) + 30
if res:
self.pred = self.design @ self.X
self.res = self.pred - self.image
if err:
inv_cov = self.design.T @ np.diag(self.invwgt) @ self.design
try:
self.cov = np.linalg.inv(inv_cov)
except LinAlgError:
self.cov = np.linalg.pinv(inv_cov)
self.sigma_flux = np.sqrt(self.cov[-1,-1])
self.sigma_mag = 2.5*np.sqrt(self.cov[-1,-1]/(self.flux**2))/np.log(10)
def writeFits(self, filename):
'''
Saves the solution as a FITS image, similar to `write`
'''
newfits = pf.HDUList([pf.PrimaryHDU(),
pf.ImageHDU(self.design, name='DESIGN'),
pf.ImageHDU(self.image, name='IMAGE'),
pf.ImageHDU(self.wgt, name='WGT'),
pf.ImageHDU(self.X, name='SOLUTION')])
newfits[0].header['RA'] = self.ra
newfits[0].header['DEC'] = self.dec
newfits[0].header['EXPNUM'] = self.expnum
newfits[0].header['CCDNUM'] = self.ccdnum
newfits[0].header['BAND'] = self.band
newfits[0].header['MAG'] = self.mag
newfits[0].header['MAG_ERR'] = self.sigma_mag
newfits[0].header['FLUX'] = self.flux
newfits[0].header['FLUX_ERR'] = self.sigma_flux
newfits.writeto(filename)
def runPhotometry(self, se_path, piff_path, zp, survey, pmc = DESMaps(), n_grid = 20, size = 30, offset_x = 0, offset_y = 0,
sparse = False, err = True, res = True, background = False):
'''
Convenience function that performs all operations required by the photometry
- se_path: path for the SE postage stamps
- piff_path: path for the PIFF files
- zp: zeropoint dictionary
- survey: `DESTNOSIM` list of exposures
- pmc: pixmappy instance for astrometry
- n_grid: grid size for point sources in the background (adds n_grid x n_grid sources)
- size: stamp size
- offset_x,y: offset in the x and y pixel coordinates
- sparse: sparse routines
- err: turns on error estimation
- res: computes residuals
- background: background estimation
'''
self.findAllExposures(survey)
ra_grid, dec_grid = local_grid(self.ra, self.dec,0.35/3600, n_grid,)
self.constructImages(zp, se_path, size = size, background = background)
self.constructPSFs(ra_grid, dec_grid, pmc, size, offset_x, offset_y, piff_path, sparse = sparse)
self.constructDesignMatrix(size, sparse, background = background)
self.solvePhotometry(sparse = sparse, err = err, res = res)
def photometryShotNoise(self, stampsize, gain_dict):
'''
Adds in shot noise estimates from a previous fit
'''
if self.flux > 0:
## fight gain
gain_cut = gain(self.expnum, self.ccdnum, self.x, self.y, stampsize, gain_dict)
gain_cut /= self.zp
sigma_photon = self.pred[-stampsize*stampsize:] / gain_cut.flatten()
sigma_photon[sigma_photon < 0] = 0
sigma_photon[np.isnan(sigma_photon)] = 0
sigma_photon[np.isinf(sigma_photon)] = 0
## update weights
self.wgt_shotnoise = np.copy(self.wgt)
self.wgt_shotnoise[-stampsize*stampsize:] += sigma_photon
self.invwgt_shotnoise = 1/self.wgt_shotnoise
self.invwgt_shotnoise[self.wgt_shotnoise == 0] = 0
self.invwgt_shotnoise[self.wgt_shotnoise < 0] = 0
self.invwgt_shotnoise[np.isnan(self.invwgt_shotnoise)] = 0
self.invwgt_shotnoise[np.isinf(self.invwgt_shotnoise)] = 0
#self.design[np.isnan(self.design)] = 0
#self.design[np.isinf(self.design)] = 0
#self.image[np.isnan(self.image)] = 0
#self.image[np.isinf(self.image)] = 0
## redo photometry
self.X_shotnoise = lstsq(np.diag(np.sqrt(self.invwgt_shotnoise)) @ self.design, self.image*np.sqrt(self.invwgt_shotnoise))[0]
self.flux_shotnoise = self.X_shotnoise[-1]
inv_cov = self.design.T @ np.diag(self.invwgt_shotnoise) @ self.design
try:
self.cov_shotnoise = np.linalg.inv(inv_cov)
except LinAlgError:
self.cov_shotnoise = np.linalg.pinv(inv_cov)
self.sigma_flux_shotnoise = np.sqrt(self.cov_shotnoise[-1,-1])
else:
self.flux_shotnoise = self.flux
self.sigma_flux_shotnoise = self.sigma_flux
self.X_shotnoise = self.X
self.cov_shotnoise = self.cov
self.pred_shotnoise = self.design @ self.X_shotnoise
self.mag_shotnoise = -2.5 * np.log10(self.flux_shotnoise) + 30
self.sigma_mag_shotnoise = 2.5*self.sigma_flux_shotnoise/np.sqrt((self.flux_shotnoise**2))/np.log(10)
def minimizeChisq(self, x_init, size=30, sparse = True, background = False, method='Powell'):
from scipy.optimize import minimize
self.solution = minimize(chi2_single, x_init, method =method, args = (self, sparse, size, background), options={'xtol' : 0.01})
x_sol = self.solution.x
self.psf_source = construct_psf_source(self.x + x_sol[0], self.y + x_sol[1], self.source_psf, size, self.x, self.y)
self.constructDesignMatrix(size, sparse, background)
self.solvePhotometry(True, True, sparse)
class BinaryDetection(Detection):
def constructPSFs(self, ra_grid, dec_grid, pmc = DESMaps(), size = 30, shift_x = 0, shift_y = 0, path = '', sparse = False, shift_x_binary = 0, shift_y_binary = 0):
super().constructPSFs(ra_grid, dec_grid, pmc, size, shift_x, shift_y, path, sparse)
self.psf_primary = self.psf_source
self.psf_secondary = construct_psf_source(self.x + shift_x_binary, self.y + shift_y_binary, psf = self.source_psf, stampsize = size, x_center = self.x, y_center = self.y)
def constructDesignMatrix(self, size, sparse = False, background = True):
'''
Constructs the design matrix for the solution.
size is the stamp size, sparse turns on the sparse solution
background defines whether the background is being fit together with the image or not
'''
if not background:
ones = np.ones((size*size,1))
else:
ones = np.zeros((size*size, 1))
if sparse:
print('Background')
background = sp.block_diag(len(self.exposures) * [ones] )
else:
background = block_diag(*(len(self.exposures) * [ones]))
psf_zeros_primary = np.zeros((self.psf_matrix.shape[0]))
psf_zeros_primary[-size*size:] = self.psf_primary
psf_zeros_secondary = np.zeros((self.psf_matrix.shape[0]))
psf_zeros_secondary[-size*size:] = self.psf_secondary
if sparse:
print('Design')
self.design = sp.hstack([self.psf_matrix, background, np.array([psf_zeros_primary]).T, np.array([psf_zeros_secondary]).T], dtype='float64')
else:
#self.design = sp.csc_matrix(self.design)
self.design = np.column_stack([self.psf_matrix, background, psf_zeros_primary, psf_zeros_secondary])
def solvePhotometry(self, res = True, err = True, sparse = False):
super().solvePhotometry(res, err, sparse)
self.flux_primary = self.X[-2]
self.flux = self.X[-2]
self.mag_primary = -2.5 * np.log10(self.flux_primary) + 30
if err:
self.sigma_flux_primary = np.sqrt(self.cov[-2,-2])
self.sigma_mag_primary = 2.5*np.sqrt(self.cov[-2,-2]/(self.flux_primary**2))/np.log(10)
self.flux_secondary = self.X[-1]
self.mag_secondary = -2.5 * np.log10(self.flux_secondary) + 30
if err:
self.sigma_flux_secondary = np.sqrt(self.cov[-1,-1])
self.sigma_mag_secondary = 2.5*np.sqrt(self.cov[-1,-1]/(self.flux_secondary**2))/np.log(10)
def runPhotometry(self, se_path, piff_path, zp, survey, pmc = DESMaps(), n_grid = 20, size = 30, offset_x = 0, offset_y = 0, shift_x_binary = 0, shift_y_binary = 0, sparse = False, err = True, res = True, background = False):
'''
Convenience function that performs all operations required by the photometry
- se_path: path for the SE postage stamps
- piff_path: path for the PIFF files
- zp: zeropoint dictionary
- survey: `DESTNOSIM` list of exposures
- pmc: pixmappy instance for astrometry
- n_grid: grid size for point sources in the background (adds n_grid x n_grid sources)
- size: stamp size
- offset_x,y: offset in the x and y pixel coordinates
- shift_x,y_binary: offset for the secondary point source
- sparse: sparse routines
- err: turns on error estimation
- res: computes residuals
- background: background estimation
'''
self.findAllExposures(survey)
ra_grid, dec_grid = local_grid(self.ra, self.dec,0.35/3600, n_grid,)
self.constructImages(zp, se_path, size = size, background = background)
self.constructPSFs(ra_grid, dec_grid, pmc, size, offset_x, offset_y, piff_path, sparse, shift_x_binary, shift_y_binary)
self.constructDesignMatrix(size, sparse, background = background)
self.solvePhotometry(sparse = sparse, err = err, res = res)
def photometryShotNoise(self, stampsize, gain_dict):
super().photometryShotNoise(stampsize, gain_dict)
self.flux_primary_shotnoise = self.X_shotnoise[-2]
self.mag_primary_shotnoise = -2.5 * np.log10(self.flux_primary_shotnoise) + 30
self.sigma_flux_primary_shotnoise = np.sqrt(self.cov_shotnoise[-2,-2])
self.sigma_mag_primary_shotnoise = 2.5*np.sqrt(self.cov_shotnoise[-2,-2]/(self.flux_primary_shotnoise**2))/np.log(10)
self.flux_secondary_shotnoise = self.X_shotnoise[-1]
self.mag_secondary_shotnoise = -2.5 * np.log10(self.flux_secondary_shotnoise) + 30
self.sigma_flux_secondary_shotnoise = np.sqrt(self.cov_shotnoise[-1,-1])
self.sigma_mag_secondary_shotnoise = 2.5*np.sqrt(self.cov_shotnoise[-1,-1]/(self.flux_secondary_shotnoise**2))/np.log(10)
def minimizeChisq(self, x_init, size=30, sparse = True, background = False, method='Powell'):
from scipy.optimize import minimize
self.solution = minimize(chi2_binary, x_init, method =method, args = (self, sparse, size, background), options={'xtol' : 0.001})
x_sol = self.solution.x
self.psf_primary = construct_psf_source(self.x + x_sol[0], self.y + x_sol[2], self.source_psf, size, self.x, self.y)
self.psf_secondary = construct_psf_source(self.x + x_sol[1], self.y + x_sol[3], self.source_psf, size, self.x, self.y)
self.constructDesignMatrix(size, sparse, background)
self.solvePhotometry(True, True, sparse)
def chi2_binary(x, detection, sparse = True, size = 30, background = False):
x1, x2, y1, y2 = x
detection.psf_primary = construct_psf_source(detection.x + x1, detection.y + y1, detection.source_psf, size, detection.x, detection.y)
detection.psf_secondary = construct_psf_source(detection.x + x2, detection.y + y2, detection.source_psf, size, detection.x, detection.y)
detection.constructDesignMatrix(size, sparse, background)
detection.solvePhotometry(True, False, sparse)
chisq = np.sum(detection.res * detection.res * detection.invwgt)
return chisq
def chi2_single(x, detection, sparse = True, size = 30, background = False):
x1, y1 = x
detection.psf_source = construct_psf_source(detection.x + x1, detection.y + y1, detection.source_psf, size, detection.x, detection.y)
detection.constructDesignMatrix(size, sparse, background)
detection.solvePhotometry(True, False, sparse)
chisq = np.sum(detection.res * detection.res * detection.invwgt)
return chisq