forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinit.cpp
699 lines (650 loc) · 26.4 KB
/
init.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/jit/argument_spec.h>
#include <torch/csrc/jit/autodiff.h>
#include <torch/csrc/jit/export.h>
#include <torch/csrc/jit/fuser/interface.h>
#include <torch/csrc/jit/fuser/kernel_cache.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/canonicalize.h>
#include <torch/csrc/jit/passes/canonicalize_ops.h>
#include <torch/csrc/jit/passes/common_subexpression_elimination.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/create_autodiff_subgraphs.h>
#include <torch/csrc/jit/passes/dead_code_elimination.h>
#include <torch/csrc/jit/passes/decompose_ops.h>
#include <torch/csrc/jit/passes/erase_number_types.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_fuser.h>
#include <torch/csrc/jit/passes/inline_fork_wait.h>
#include <torch/csrc/jit/passes/inliner.h>
#include <torch/csrc/jit/passes/loop_unrolling.h>
#include <torch/csrc/jit/passes/lower_graph.h>
#include <torch/csrc/jit/passes/lower_tuples.h>
#include <torch/csrc/jit/passes/onnx.h>
#include <torch/csrc/jit/passes/onnx/cast_all_constant_to_floating.h>
#include <torch/csrc/jit/passes/onnx/constant_fold.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_loop.h>
#include <torch/csrc/jit/passes/onnx/fixup_onnx_conditionals.h>
#include <torch/csrc/jit/passes/onnx/peephole.h>
#include <torch/csrc/jit/passes/onnx/prepare_division_for_onnx.h>
#include <torch/csrc/jit/passes/onnx/scalar_type_analysis.h>
#include <torch/csrc/jit/passes/onnx/unpack_quantized_weights.h>
#include <torch/csrc/jit/passes/onnx/prepare_inplace_ops_for_onnx.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/passes/quantization.h>
#include <torch/csrc/jit/passes/remove_expands.h>
#include <torch/csrc/jit/passes/remove_inplace_ops.h>
#include <torch/csrc/jit/passes/shape_analysis.h>
#include <torch/csrc/jit/passes/specialize_autogradzero.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/passes/utils/check_alias_annotation.h>
#include <torch/csrc/jit/print_handler.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/python_arg_flatten.h>
#include <torch/csrc/jit/python_custom_class.h>
#include <torch/csrc/jit/python_ir.h>
#include <torch/csrc/jit/python_tracer.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/init.h>
#include <torch/csrc/jit/script/jit_exception.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/python_tree_views.h>
#include <torch/csrc/jit/tracer.h>
#include <c10/macros/Export.h>
#include <caffe2/serialize/inline_container.h>
#include <ATen/core/function_schema.h>
#include <pybind11/functional.h>
#include <pybind11/iostream.h>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <utility>
namespace torch {
namespace jit {
using ::c10::Argument;
using ::c10::FunctionSchema;
using caffe2::serialize::PyTorchStreamReader;
using caffe2::serialize::PyTorchStreamWriter;
namespace {
using autograd::variable_list;
bool loadPythonClasses() {
// Leaving this code here, because it will likely be useful at some point
// PyObject *jit_module = PyImport_ImportModule("torch.jit");
// THPUtils_assert(jit_module, "class loader couldn't access "
//"torch.jit module");
// PyObject *jit_dict = PyModule_GetDict(jit_module);
return true;
}
} // anonymous namespace
#if !defined(_WIN32) && !defined(__HIP_PLATFORM_HCC__)
TORCH_API void runJITCPPTests(bool runCuda);
#endif
void initJITBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
py::register_exception<JITException>(m, "JITException");
py::class_<python::IODescriptor> iodescriptor(
m, "IODescriptor"); // NOLINT(bugprone-unused-raii)
m.def("_jit_init", loadPythonClasses)
.def(
"_jit_debug_fuser_num_cached_kernel_specs",
torch::jit::fuser::debugNumCachedKernelSpecs)
.def("_jit_pass_onnx_remove_print", RemovePrintOps)
.def("_jit_pass_onnx_preprocess_caffe2", PreprocessCaffe2Ops)
.def("_jit_pass_onnx", ToONNX)
.def("_jit_pass_lower_all_tuples", LowerAllTuples)
.def(
"_jit_pass_onnx_peephole",
[](std::shared_ptr<Graph>& graph,
int opset_version,
bool fixed_batch_size) {
return PeepholeOptimizeONNX(graph, opset_version, fixed_batch_size);
})
.def(
"_jit_pass_onnx_cast_all_constant_to_floating",
CastAllConstantToFloating)
.def(
"_jit_pass_onnx_constant_fold",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict,
int opset_version) {
ConstantFoldONNX(
graph->block(),
paramsDict,
opset_version); // overload resolution
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_onnx_scalar_type_analysis", ScalarTypeAnalysisForONNX)
.def("_jit_pass_onnx_prepare_inplace_ops_for_onnx", PrepareInplaceOpsForONNX)
.def("_jit_pass_fuse", FuseGraph)
.def(
"_jit_pass_dce",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(g->block()); // overload resolution
})
.def(
"_jit_pass_dce_allow_deleting_nodes_with_side_effects",
[](std::shared_ptr<Graph>& g) {
return EliminateDeadCode(
g->block(),
true,
DCESideEffectPolicy::
ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS); // overload
// resolution
})
.def(
"_jit_pass_cse",
[](std::shared_ptr<Graph>& g) {
return EliminateCommonSubexpression(g); // overload resolution
})
.def(
"_jit_pass_insert_observers",
[](script::Module& module,
const std::string& method_name,
const py::dict& qconfig_dict,
bool inplace) {
auto dict = py::cast<std::unordered_map<
std::string,
std::tuple<script::Module, script::Module>>>(qconfig_dict);
return InsertObservers(module, method_name, dict, inplace);
},
py::arg("module"),
py::arg("method_name"),
py::arg("qconfig_dict"),
py::arg("inplace") = false)
.def(
"_jit_pass_insert_quant_dequant",
[](script::Module& module,
const std::string& method_name,
bool inplace) {
return InsertQuantDeQuant(module, method_name, inplace);
},
py::arg("module"),
py::arg("method_name"),
py::arg("inplace") = false)
.def(
"_jit_pass_insert_prepack_unpack",
[](std::shared_ptr<Graph>& g) { return InsertPrepackUnpack(g); })
.def(
"_jit_pass_insert_prepack_unpack",
[](script::Module& module) { return InsertPrepackUnpack(module); })
.def(
"_jit_pass_quant_fusion",
[](std::shared_ptr<Graph>& g) { return QuantFusion(g); })
.def("_jit_pass_fold_convbn", &FoldConvBatchNorm2d)
.def("_jit_pass_fuse_linear", &FuseLinear)
.def(
"_jit_pass_fold_quantize",
[](script::Module& module, const std::string& method_name) {
FoldQuantizeCallIntoBuffer(module, method_name);
})
.def("_jit_pass_fold_prepack", &FoldPrepackedWeightIntoModule)
.def("_jit_pass_dedup_module_uses", &DedupModuleUses)
.def(
"_jit_pass_pattern_based_rewrite",
[](const script::Module& m) { return PatternBasedRewrite(m); })
.def(
"_jit_pass_custom_pattern_based_rewrite",
[](const std::string& pattern,
const std::string& fused_node_name,
const script::Module& m) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnModule(m);
})
.def(
"_jit_pass_custom_pattern_based_rewrite_graph",
[](const std::string& pattern,
const std::string& fused_node_name,
std::shared_ptr<Graph> g) {
SubgraphRewriter subgraph_rewriter;
subgraph_rewriter.RegisterRewritePattern(pattern, fused_node_name);
subgraph_rewriter.runOnGraph(g);
})
.def(
"_jit_pass_fold_quant_inputs",
[](std::shared_ptr<Graph>& g) {
return FoldQuantNodesIntoInputsOutputs(g);
})
.def(
"_jit_pass_remove_inplace_ops",
[](std::shared_ptr<Graph> g) { return RemoveInplaceOps(g); })
.def("_jit_pass_constant_pooling", ConstantPooling)
.def(
"_jit_pass_peephole",
[](const std::shared_ptr<Graph>& g, bool addmm_fusion_enabled) {
return PeepholeOptimize(g, addmm_fusion_enabled);
},
py::arg("graph"),
py::arg("addmm_fusion_enabled") = false)
.def(
"_jit_pass_canonicalize",
[](const std::shared_ptr<Graph>& g) { return Canonicalize(g); })
.def("_jit_pass_lint", LintGraph)
.def(
"_jit_pass_complete_shape_analysis",
[](std::shared_ptr<Graph> graph, py::tuple inputs, bool with_grad) {
ArgumentSpecCreator arg_spec_creator(*graph);
Stack stack;
stack.reserve(inputs.size()); // captures?
for (auto& obj : inputs) {
stack.push_back(toTypeInferredIValue(obj));
}
ArgumentSpec spec = arg_spec_creator.create(with_grad, stack);
arg_spec_creator.specializeTypes(*graph, spec);
// We only get partial specialization from the arg_spec_creator, but
// we want full shape specialization. The alternative would be to
// have a "complete type inference" function in ArguemntSpecCreator.
auto g_inputs = graph->inputs();
for (size_t i = 0; i < inputs.size(); ++i) {
if (stack[i].isTensor()) {
g_inputs[i]->setType(stack[i].type());
}
}
PropagateInputShapes(graph);
})
.def("_jit_pass_remove_expands", RemoveExpands)
.def("_jit_pass_erase_number_types", EraseNumberTypes)
.def("_jit_pass_inline_fork_wait", InlineForkWait)
.def("_jit_pass_inline", Inline)
.def("_jit_pass_prepare_division_for_onnx", PrepareDivisionForONNX)
.def(
"_jit_pass_lower_graph",
[](std::shared_ptr<Graph>& graph, const script::Module& self) {
return LowerGraph(*graph, self._ivalue());
})
.def("_jit_pass_loop_unrolling", UnrollLoops)
.def(
"_jit_pass_constant_propagation",
[](std::shared_ptr<Graph>& g) { return ConstantPropagation(g); })
.def("_jit_pass_erase_shape_information", EraseShapeInformation)
.def(
"_jit_pass_create_autodiff_subgraphs",
[](std::shared_ptr<Graph> graph) { CreateAutodiffSubgraphs(graph); })
#if defined(BUILDING_TESTS) && !defined(_WIN32) && !defined(__HIP_PLATFORM_HCC__)
.def(
"_jit_run_cpp_tests",
[](bool runCuda) {
// We have to release the GIL inside this method, because if we
// happen to initialize the autograd engine in these tests, the
// newly spawned worker threads will try to initialize their
// PyThreadState*, and they need the GIL for this.
pybind11::gil_scoped_release _no_gil;
return runJITCPPTests(runCuda);
},
py::arg("run_cuda"))
.def("_jit_has_cpp_tests", []() {
return true;
})
#else
.def("_jit_run_cpp_tests", []() {
throw std::exception();
})
.def("_jit_has_cpp_tests", []() {
return false;
})
#endif
.def(
"_jit_flatten",
[](py::handle& obj) {
auto res = python::flatten(obj);
return std::make_pair(res.vars, res.desc);
})
.def(
"_jit_unflatten",
[](autograd::variable_list vars, python::IODescriptor& desc) {
return py::reinterpret_steal<py::object>(
python::unflatten(vars, desc));
})
.def("_jit_pass_onnx_block", BlockToONNX)
.def("_jit_pass_fixup_onnx_loops", FixupONNXLoops)
.def("_jit_pass_fixup_onnx_conditionals", FixupONNXConditionals)
.def("_jit_pass_canonicalize_ops", CanonicalizeOps)
.def("_jit_pass_decompose_ops", DecomposeOps)
.def("_jit_pass_specialize_autogradzero", specializeAutogradZero)
.def("_jit_override_can_fuse_on_cpu", &overrideCanFuseOnCPU)
.def(
"_jit_differentiate",
[](Graph& g) {
// the python binding slightly differs in semantics
// it makes a copy of the input Graph, and works on that
// jit::differentiate mutates the input Graph
auto g_clone = g.copy();
return differentiate(g_clone);
})
.def(
"_jit_check_alias_annotation",
[](std::shared_ptr<Graph> g,
py::tuple args,
const std::string& unqualified_op_name) {
auto stack = toTraceableStack(args);
checkAliasAnnotation(g, std::move(stack), unqualified_op_name);
})
.def(
"_jit_set_profiling_mode",
[](bool profiling_flag) {
bool oldState = getProfilingMode();
getProfilingMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_profiling_executor",
[](bool profiling_flag) {
bool oldState = getExecutorMode();
getExecutorMode() = profiling_flag;
return oldState;
})
.def(
"_jit_set_inline_everything_mode",
[](bool enabled) { script::getInlineEverythingMode() = enabled; })
.def(
"_jit_get_inline_everything_mode",
[]() { return script::getInlineEverythingMode(); })
.def(
"_jit_try_infer_type",
[](py::object obj) -> TypePtr {
auto match = tryToInferType(obj);
if (match.success()) {
return match.type();
}
return nullptr;
})
.def(
"_jit_fuser_get_fused_kernel_code",
[](Graph& g, std::vector<at::Tensor> inps) {
return debugGetFusedKernelCode(g, inps);
})
.def("_jit_pass_onnx_unpack_quantized_weights",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict){
UnpackQuantizedWeights(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move)
.def("_jit_pass_onnx_quantization_insert_permutes",
[](std::shared_ptr<Graph>& graph,
std::map<std::string, at::Tensor>& paramsDict){
insertPermutes(graph, paramsDict);
return paramsDict;
},
pybind11::return_value_policy::move);
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<CompleteArgumentSpec>(m, "CompleteArgumentSpec")
.def("__repr__", [](CompleteArgumentSpec& self) {
std::ostringstream s;
s << self;
return s.str();
});
// NOLINTNEXTLINE(bugprone-unused-raii)
py::class_<ArgumentSpec>(m, "ArgumentSpec");
py::class_<Code>(m, "Code").def("grad_executor_states", [](Code& c) {
std::vector<GraphExecutorState> states;
for (auto& e : c.grad_executors()) {
states.emplace_back(e->getDebugState());
}
return states;
});
py::class_<ExecutionPlan>(m, "ExecutionPlan")
.def_property_readonly("graph", [](ExecutionPlan& s) { return s.graph; })
.def_property_readonly("code", [](ExecutionPlan& s) { return s.code; });
py::class_<Gradient>(m, "Gradient")
.def_property_readonly("f", [](Gradient& m) { return m.f; })
.def_property_readonly("df", [](Gradient& m) { return m.df; })
.def_property_readonly(
"f_real_outputs", [](Gradient& m) { return m.f_real_outputs; })
.def_property_readonly(
"df_input_vjps", [](Gradient& m) { return m.df_input_vjps; })
.def_property_readonly(
"df_input_captured_inputs",
[](Gradient& m) { return m.df_input_captured_inputs; })
.def_property_readonly(
"df_input_captured_outputs",
[](Gradient& m) { return m.df_input_captured_outputs; })
.def_property_readonly(
"df_output_vjps", [](Gradient& m) { return m.df_output_vjps; });
py::class_<GraphExecutorState>(m, "GraphExecutorState")
.def_property_readonly(
"graph", [](GraphExecutorState& s) { return s.graph; })
.def_property_readonly(
"execution_plans",
[](GraphExecutorState& s) { return s.execution_plans; })
.def_property_readonly(
"fallback", [](GraphExecutorState& s) { return s.fallback; });
py::class_<PyTorchStreamWriter>(m, "PyTorchFileWriter")
.def(py::init<std::string>())
.def(py::init([](const py::object &buffer) {
auto writer_func = [=](const void *data, size_t size) {
auto bytes = py::bytes(reinterpret_cast<const char *>(data), size);
buffer.attr("write")(std::move(bytes));
return size;
};
return std::make_unique<PyTorchStreamWriter>(std::move(writer_func));
}))
.def(py::init<const std::function<size_t(const void *, size_t)> &>())
.def("write_record",
[](PyTorchStreamWriter &self, const std::string &name,
const char *data,
size_t size) { return self.writeRecord(name, data, size); })
.def("write_end_of_file", &PyTorchStreamWriter::writeEndOfFile)
.def("write_record",
[](PyTorchStreamWriter &self, const std::string &name,
uintptr_t data, size_t size) {
return self.writeRecord(name, reinterpret_cast<const char *>(data),
size);
});
// This allows PyTorchStreamReader to read from a Python buffer. It requires
// that the buffer implement `seek()`, `tell()`, and `read()`.
class BufferAdapter : public caffe2::serialize::ReadAdapterInterface {
public:
BufferAdapter(const py::object& buffer) : buffer_(buffer) {
// Jump to the end of the buffer to get its size
auto current = buffer.attr("tell")();
buffer.attr("seek")(current, py::module::import("os").attr("SEEK_END"));
size_ = py::cast<size_t>(buffer.attr("tell")());
buffer.attr("seek")(current);
}
size_t size() const override {
return size_;
}
size_t read(uint64_t pos, void* buf, size_t n, const char* what)
const override {
// Seek to desired position
buffer_.attr("seek")(pos);
// Read bytes into `buf` from the buffer
std::string bytes = py::cast<std::string>(buffer_.attr("read")(n));
std::copy(
bytes.data(),
bytes.data() + bytes.size(),
reinterpret_cast<char*>(buf));
return bytes.size();
}
py::object buffer_;
size_t size_;
};
py::class_<PyTorchStreamReader>(m, "PyTorchFileReader")
.def(py::init<std::string>())
.def(py::init([](const py::object& buffer) {
auto adapter = std::make_unique<BufferAdapter>(std::move(buffer));
return std::make_unique<PyTorchStreamReader>(std::move(adapter));
}))
.def("get_record", [](PyTorchStreamReader& self, const std::string& key) {
at::DataPtr data;
size_t size;
std::tie(data, size) = self.getRecord(key);
return py::bytes(reinterpret_cast<const char*>(data.get()), size);
})
.def("get_all_records", [](PyTorchStreamReader& self) {
return self.getAllRecords();
});
m.def(
"_jit_get_operation",
[](const std::string& op_name) {
try {
auto symbol = Symbol::fromQualString(op_name);
auto operations = getAllOperatorsFor(symbol);
TORCH_CHECK(!operations.empty(), "No such operator ", op_name);
TORCH_CHECK(
operations.size() == 1,
"Found ",
operations.size(),
" overloads for operator ",
op_name,
"! Overloads are not supported from Python.");
std::shared_ptr<Operator> op = operations[0];
AT_ASSERT(op != nullptr);
std::ostringstream docstring;
docstring << "Automatically bound operator '" << op_name
<< "' with schema: " << op->schema();
return py::cpp_function(
[op](py::args args, py::kwargs kwargs) {
return invokeOperatorFromPython(
*op, std::move(args), std::move(kwargs));
},
py::name(symbol.toUnqualString()),
py::doc(docstring.str().c_str()));
} catch (const c10::Error& error) {
throw std::runtime_error(error.what_without_backtrace());
}
},
py::arg("qualified_name"));
m.def("parse_ir", [](const std::string& input) {
auto graph = std::make_shared<Graph>();
script::parseIR(input, &*graph);
return graph;
});
m.def("parse_schema", parseSchema);
py::class_<FunctionSchema>(m, "FunctionSchema")
.def_property_readonly(
"name", [](FunctionSchema& self) { return self.name(); })
.def_property_readonly(
"overload_name",
[](FunctionSchema& self) { return self.overload_name(); })
.def_property_readonly(
"arguments", [](FunctionSchema& self) { return self.arguments(); })
.def_property_readonly(
"returns", [](FunctionSchema& self) { return self.returns(); })
.def("is_backward_compatible_with",
[](const FunctionSchema& self, const FunctionSchema& old_schema) {
return self.isBackwardCompatibleWith(old_schema);
})
.def("__eq__", [](const FunctionSchema& self,
const FunctionSchema& other) {
return self == other;
})
.def("__str__", [](FunctionSchema& self) {
std::stringstream ss;
ss << self;
return ss.str();
});
py::class_<Argument>(m, "Argument")
.def_property_readonly("name", [](Argument& self) { return self.name(); })
.def_property_readonly("type", [](Argument& self) { return self.type(); })
.def_property_readonly(
"N",
[](Argument& self) -> py::object {
return (self.N()) ? py::cast(*self.N()) : py::none();
})
.def_property_readonly("default_value", [](Argument& self) -> py::object {
if (!self.default_value())
return py::none();
IValue v = *self.default_value();
return toPyObject(std::move(v));
});
m.def(
"_jit_get_all_schemas", []() {
const std::vector<std::shared_ptr<Operator>>& operations = getAllOperators();
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
m.def("_jit_get_schemas_for_operator", [](const std::string& qualified_name) {
auto symbol = Symbol::fromQualString(qualified_name);
auto operations = getAllOperatorsFor(symbol);
return fmap(operations, [](const std::shared_ptr<Operator>& op) {
return op->schema();
});
});
struct PythonFutureWrapper {
explicit PythonFutureWrapper(c10::intrusive_ptr<c10::ivalue::Future> fut)
: fut(std::move(fut)) {}
c10::intrusive_ptr<c10::ivalue::Future> fut;
};
py::class_<PythonFutureWrapper>(m, "Future");
m.def("fork", [](py::args args) {
AT_ASSERT(args.size() >= 1);
py::function f = py::cast<py::function>(args[0]);
py::tuple args_tup(args.size() - 1);
for (size_t i = 1; i < args.size(); ++i) {
args_tup[i - 1] = args[i];
}
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
auto fork_node = graph->insertNode(graph->create(prim::TracedFork, 1));
auto body_block = fork_node->addBlock();
Value* node_output;
py::object py_func_output;
// Insert new trace ops into the fork op's sub-block
WithInsertPoint guard(body_block);
IValue output_ivalue;
{
tracer::WithNestedTracingFrame env_guard;
// Run the user-supplied function
py_func_output = f(*args_tup);
// Convert the output of the user-supplied function to IValue. The type
// information of this IValue is used both to record the correct type in
// the trace.
output_ivalue = toTypeInferredIValue(py_func_output);
Value* out_val = jit::tracer::getValueTrace(output_ivalue);
body_block->registerOutput(out_val);
node_output =
fork_node->output()->setType(FutureType::create(out_val->type()));
}
auto retval =
c10::make_intrusive<c10::ivalue::Future>(output_ivalue.type());
// Record the ivalue in the tracer
jit::tracer::setValueTrace(retval, node_output);
// stuff the ivalue output in the Future
retval->markCompleted(output_ivalue);
return PythonFutureWrapper(retval);
} else {
auto result = toTypeInferredIValue(f(*args_tup));
auto retval = c10::make_intrusive<c10::ivalue::Future>(result.type());
retval->markCompleted(std::move(result));
return PythonFutureWrapper(retval);
}
});
m.def("wait", [](PythonFutureWrapper& fut) {
if (jit::tracer::isTracing()) {
auto graph = jit::tracer::getTracingState()->graph;
Value* fut_val = jit::tracer::getValueTrace(fut.fut);
auto output = graph->insert(aten::wait, {fut_val});
jit::tracer::setValueTrace(fut.fut->value(), output);
}
return fut.fut->value();
});
m.def("_jit_assert_is_instance", [](py::object obj, TypePtr type) {
toIValue(obj, type);
});
initPythonCustomClassBindings(module);
initPythonIRBindings(module);
tracer::initPythonTracerBindings(module);
script::initTreeViewBindings(module);
script::initJitScriptBindings(module);
setPrintHandler([](const std::string& str) {
py::gil_scoped_acquire acquire;
try {
auto _stdout = py::module::import("sys").attr("stdout");
_stdout.attr("write")(str);
} catch (py::error_already_set& e) {
throw std::runtime_error(e.what());
}
});
}
} // namespace jit
} // namespace torch