-
Notifications
You must be signed in to change notification settings - Fork 758
/
Copy pathrun_analysis.R
50 lines (39 loc) · 1.98 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
library(reshape2)
filename <- "getdata_dataset.zip"
## Download and unzip the dataset:
if (!file.exists(filename)){
fileURL <- "https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip "
download.file(fileURL, filename, method="curl")
}
if (!file.exists("UCI HAR Dataset")) {
unzip(filename)
}
# Load activity labels + features
activityLabels <- read.table("UCI HAR Dataset/activity_labels.txt")
activityLabels[,2] <- as.character(activityLabels[,2])
features <- read.table("UCI HAR Dataset/features.txt")
features[,2] <- as.character(features[,2])
# Extract only the data on mean and standard deviation
featuresWanted <- grep(".*mean.*|.*std.*", features[,2])
featuresWanted.names <- features[featuresWanted,2]
featuresWanted.names = gsub('-mean', 'Mean', featuresWanted.names)
featuresWanted.names = gsub('-std', 'Std', featuresWanted.names)
featuresWanted.names <- gsub('[-()]', '', featuresWanted.names)
# Load the datasets
train <- read.table("UCI HAR Dataset/train/X_train.txt")[featuresWanted]
trainActivities <- read.table("UCI HAR Dataset/train/Y_train.txt")
trainSubjects <- read.table("UCI HAR Dataset/train/subject_train.txt")
train <- cbind(trainSubjects, trainActivities, train)
test <- read.table("UCI HAR Dataset/test/X_test.txt")[featuresWanted]
testActivities <- read.table("UCI HAR Dataset/test/Y_test.txt")
testSubjects <- read.table("UCI HAR Dataset/test/subject_test.txt")
test <- cbind(testSubjects, testActivities, test)
# merge datasets and add labels
allData <- rbind(train, test)
colnames(allData) <- c("subject", "activity", featuresWanted.names)
# turn activities & subjects into factors
allData$activity <- factor(allData$activity, levels = activityLabels[,1], labels = activityLabels[,2])
allData$subject <- as.factor(allData$subject)
allData.melted <- melt(allData, id = c("subject", "activity"))
allData.mean <- dcast(allData.melted, subject + activity ~ variable, mean)
write.table(allData.mean, "tidy.txt", row.names = FALSE, quote = FALSE)