forked from spiglerg/RNN_Text_Generation_Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_tf.py
229 lines (149 loc) · 6.28 KB
/
rnn_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Text generation using a Recurrent Neural Network (LSTM).
"""
import tensorflow as tf
import numpy as np
import random
import time
import sys
## RNN with num_layers LSTM layers and a fully-connected output layer
## The network allows for a dynamic number of iterations, depending on the inputs it receives.
##
## out (fc layer; out_size)
## ^
## lstm
## ^
## lstm (lstm size)
## ^
## in (in_size)
class ModelNetwork:
def __init__(self, in_size, lstm_size, num_layers, out_size, session, learning_rate=0.003, name="rnn"):
self.scope = name
self.in_size = in_size
self.lstm_size = lstm_size
self.num_layers = num_layers
self.out_size = out_size
self.session = session
self.learning_rate = tf.constant( learning_rate )
# Last state of LSTM, used when running the network in TEST mode
self.lstm_last_state = np.zeros((self.num_layers*2*self.lstm_size,))
with tf.variable_scope(self.scope):
## (batch_size, timesteps, in_size)
self.xinput = tf.placeholder(tf.float32, shape=(None, None, self.in_size), name="xinput")
self.lstm_init_value = tf.placeholder(tf.float32, shape=(None, self.num_layers*2*self.lstm_size), name="lstm_init_value")
# LSTM
self.lstm_cells = [ tf.contrib.rnn.BasicLSTMCell(self.lstm_size, forget_bias=1.0, state_is_tuple=False) for i in range(self.num_layers)]
self.lstm = tf.contrib.rnn.MultiRNNCell(self.lstm_cells, state_is_tuple=False)
# Iteratively compute output of recurrent network
outputs, self.lstm_new_state = tf.nn.dynamic_rnn(self.lstm, self.xinput, initial_state=self.lstm_init_value, dtype=tf.float32)
# Linear activation (FC layer on top of the LSTM net)
self.rnn_out_W = tf.Variable(tf.random_normal( (self.lstm_size, self.out_size), stddev=0.01 ))
self.rnn_out_B = tf.Variable(tf.random_normal( (self.out_size, ), stddev=0.01 ))
outputs_reshaped = tf.reshape( outputs, [-1, self.lstm_size] )
network_output = ( tf.matmul( outputs_reshaped, self.rnn_out_W ) + self.rnn_out_B )
batch_time_shape = tf.shape(outputs)
self.final_outputs = tf.reshape( tf.nn.softmax( network_output), (batch_time_shape[0], batch_time_shape[1], self.out_size) )
## Training: provide target outputs for supervised training.
self.y_batch = tf.placeholder(tf.float32, (None, None, self.out_size))
y_batch_long = tf.reshape(self.y_batch, [-1, self.out_size])
self.cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=network_output, labels=y_batch_long) )
self.train_op = tf.train.RMSPropOptimizer(self.learning_rate, 0.9).minimize(self.cost)
## Input: X is a single element, not a list!
def run_step(self, x, init_zero_state=True):
## Reset the initial state of the network.
if init_zero_state:
init_value = np.zeros((self.num_layers*2*self.lstm_size,))
else:
init_value = self.lstm_last_state
out, next_lstm_state = self.session.run([self.final_outputs, self.lstm_new_state], feed_dict={self.xinput:[x], self.lstm_init_value:[init_value] } )
self.lstm_last_state = next_lstm_state[0]
return out[0][0]
## xbatch must be (batch_size, timesteps, input_size)
## ybatch must be (batch_size, timesteps, output_size)
def train_batch(self, xbatch, ybatch):
init_value = np.zeros((xbatch.shape[0], self.num_layers*2*self.lstm_size))
cost, _ = self.session.run([self.cost, self.train_op], feed_dict={self.xinput:xbatch, self.y_batch:ybatch, self.lstm_init_value:init_value } )
return cost
# Embed string to character-arrays -- it generates an array len(data) x len(vocab)
# Vocab is a list of elements
def embed_to_vocab(data_, vocab):
data = np.zeros((len(data_), len(vocab)))
cnt=0
for s in data_:
v = [0.0]*len(vocab)
v[vocab.index(s)] = 1.0
data[cnt, :] = v
cnt += 1
return data
def decode_embed(array, vocab):
return vocab[ array.index(1) ]
ckpt_file = ""
TEST_PREFIX = "The " # Prefix to prompt the network in test mode
print "Usage:"
print '\t\t ', sys.argv[0], ' [ckpt model to load] [prefix, e.g., "The "]'
if len(sys.argv)>=2:
ckpt_file=sys.argv[1]
if len(sys.argv)==3:
TEST_PREFIX = sys.argv[2]
## Load the data
data_ = ""
with open('data/shakespeare.txt', 'r') as f:
data_ += f.read()
data_ = data_.lower()
## Convert to 1-hot coding
vocab = sorted(list(set(data_)))
data = embed_to_vocab(data_, vocab)
in_size = out_size = len(vocab)
lstm_size = 256 #128
num_layers = 2
batch_size = 64 #128
time_steps = 100 #50
NUM_TRAIN_BATCHES = 20000
LEN_TEST_TEXT = 500 # Number of test characters of text to generate after training the network
## Initialize the network
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.InteractiveSession(config=config)
net = ModelNetwork(in_size = in_size,
lstm_size = lstm_size,
num_layers = num_layers,
out_size = out_size,
session = sess,
learning_rate = 0.003,
name = "char_rnn_network")
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver(tf.global_variables())
## 1) TRAIN THE NETWORK
if ckpt_file == "":
last_time = time.time()
batch = np.zeros((batch_size, time_steps, in_size))
batch_y = np.zeros((batch_size, time_steps, in_size))
possible_batch_ids = range(data.shape[0]-time_steps-1)
for i in range(NUM_TRAIN_BATCHES):
# Sample time_steps consecutive samples from the dataset text file
batch_id = random.sample( possible_batch_ids, batch_size )
for j in range(time_steps):
ind1 = [k+j for k in batch_id]
ind2 = [k+j+1 for k in batch_id]
batch[:, j, :] = data[ind1, :]
batch_y[:, j, :] = data[ind2, :]
cst = net.train_batch(batch, batch_y)
if (i%100) == 0:
new_time = time.time()
diff = new_time - last_time
last_time = new_time
print "batch: ",i," loss: ",cst," speed: ",(100.0/diff)," batches / s"
saver.save(sess, "saved/model.ckpt")
## 2) GENERATE LEN_TEST_TEXT CHARACTERS USING THE TRAINED NETWORK
if ckpt_file != "":
saver.restore(sess, ckpt_file)
TEST_PREFIX = TEST_PREFIX.lower()
for i in range(len(TEST_PREFIX)):
out = net.run_step( embed_to_vocab(TEST_PREFIX[i], vocab) , i==0)
print "SENTENCE:"
gen_str = TEST_PREFIX
for i in range(LEN_TEST_TEXT):
element = np.random.choice( range(len(vocab)), p=out ) # Sample character from the network according to the generated output probabilities
gen_str += vocab[element]
out = net.run_step( embed_to_vocab(vocab[element], vocab) , False )
print gen_str