-
Notifications
You must be signed in to change notification settings - Fork 0
/
cca_dynamic_bfs.hpp
631 lines (511 loc) · 23.1 KB
/
cca_dynamic_bfs.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
/*
BSD 3-Clause License
Copyright (c) 2023, Bibrak Qamar
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CCA_BFS_HPP
#define CCA_BFS_HPP
#include "CCASimulator.hpp"
#include "Enums.hpp"
// Datastructures
#include "Graph.hpp"
#include "RecursiveParallelVertex.hpp"
#include "cmdparser.hpp"
// For memcpy()
#include <cstring>
#include <fstream>
inline static constexpr u_int32_t undefined_level = 999999;
// This is what the action carries as payload.
struct BFSArguments
{
u_int32_t level;
u_int32_t src_vertex_id;
};
// This is what the continuation for insert edge carries as payload.
struct BFSArgumentsEdgeInsertContinuation
{
u_int32_t level;
u_int32_t src_vertex_id; // maybe not needed.
Address dst_vertex_addr;
u_int32_t edge_weight;
u_int32_t root_vertex; // Perhaps not needed.
};
template<typename Vertex_T>
struct BFSVertex : Vertex_T
{
inline static constexpr u_int32_t max_level = undefined_level;
u_int32_t bfs_level;
BFSVertex(u_int32_t id_in, u_int32_t total_number_of_vertices_in)
: bfs_level(BFSVertex::max_level)
{
this->id = id_in;
this->number_of_edges = 0;
this->total_number_of_vertices = total_number_of_vertices_in;
}
auto edge_insert_continuation_argument(Address dst_vertex_addr_in,
u_int32_t edge_weight_in,
u_int32_t root_vertex_in) -> ActionArgumentType
{
BFSArgumentsEdgeInsertContinuation arg_continuation;
arg_continuation.level = this->bfs_level;
arg_continuation.src_vertex_id = this->id;
arg_continuation.dst_vertex_addr = dst_vertex_addr_in;
arg_continuation.edge_weight = edge_weight_in;
arg_continuation.root_vertex = root_vertex_in;
/* std::cout << "edge_insert_continuation_argument: dst_vertex_addr_in: " <<
dst_vertex_addr_in
<< "\n"; */
return cca_create_action_argument<BFSArgumentsEdgeInsertContinuation>(arg_continuation);
}
// Nothing to do.
void configure_derived_class_LCOs() {}
BFSVertex() {}
~BFSVertex() {}
};
// CCAFunctionEvent ids for the BFS action: predicate, work, and diffuse.
// In the main register the functions with the CCASimulator chip and get their ids.
extern CCAFunctionEvent dynamic_bfs_predicate;
extern CCAFunctionEvent dynamic_bfs_work;
extern CCAFunctionEvent dynamic_bfs_diffuse_predicate;
extern CCAFunctionEvent dynamic_bfs_diffuse;
extern CCAFunctionEvent dynamic_bfs_edge_insert_continuation;
template<typename ghost_type>
inline auto
dynamic_bfs_predicate_T(ComputeCell& cc, const Address addr, const ActionArgumentType args)
-> Closure
{
cc.apply_CPI(1);
// First check whether this is a ghost vertex.If it is then always predicate true.
// parent word is used in the sense that `RecursiveParallelVertex` is the parent class.
auto* parent_recursive_parralel_vertex = static_cast<ghost_type*>(cc.get_object(addr));
if (parent_recursive_parralel_vertex->is_ghost_vertex) {
return Closure(cc.null_true_event, nullptr);
}
auto* v = static_cast<BFSVertex<ghost_type>*>(cc.get_object(addr));
BFSArguments const bfs_args = cca_get_action_argument<BFSArguments>(args);
u_int32_t const incoming_level = bfs_args.level;
if (v->bfs_level > incoming_level) {
return Closure(cc.null_true_event, nullptr);
}
return Closure(cc.null_false_event, nullptr);
}
inline auto
dynamic_bfs_predicate_func(ComputeCell& cc,
const Address addr,
actionType /* action_type_in */,
const ActionArgumentType args) -> Closure
{
INVOKE_HANDLER_3(dynamic_bfs_predicate_T, cc, addr, args);
}
template<typename ghost_type>
inline auto
dynamic_bfs_work_T(ComputeCell& cc, const Address addr, const ActionArgumentType args) -> Closure
{
cc.apply_CPI(1);
// First check whether this is a ghost vertex. If it is then don't perform any work.
// parent word is used in the sense that `RecursiveParallelVertex` is the parent class.
auto* parent_recursive_parralel_vertex = static_cast<ghost_type*>(cc.get_object(addr));
if (parent_recursive_parralel_vertex->is_ghost_vertex) {
return Closure(cc.null_true_event, nullptr);
}
auto* v = static_cast<BFSVertex<ghost_type>*>(cc.get_object(addr));
BFSArguments const bfs_args = cca_get_action_argument<BFSArguments>(args);
u_int32_t const incoming_level = bfs_args.level;
// Update level with the new level
v->bfs_level = incoming_level;
return Closure(cc.null_true_event, nullptr);
}
inline auto
dynamic_bfs_work_func(ComputeCell& cc,
const Address addr,
actionType /* action_type_in */,
const ActionArgumentType args) -> Closure
{
INVOKE_HANDLER_3(dynamic_bfs_work_T, cc, addr, args);
}
template<typename ghost_type>
inline auto
dynamic_bfs_diffuse_predicate_T(ComputeCell& cc, const Address addr, const ActionArgumentType args)
-> Closure
{
cc.apply_CPI(1);
// First check whether this is a ghost vertex. If it is then always predicate true.
// parent word is used in the sense that `RecursiveParallelVertex` is the parent class.
auto* parent_recursive_parralel_vertex = static_cast<ghost_type*>(cc.get_object(addr));
if (parent_recursive_parralel_vertex->is_ghost_vertex) {
return Closure(cc.null_true_event, nullptr);
}
auto* v = static_cast<BFSVertex<ghost_type>*>(cc.get_object(addr));
BFSArguments const bfs_args = cca_get_action_argument<BFSArguments>(args);
u_int32_t const incoming_level = bfs_args.level;
if (v->bfs_level == incoming_level) {
return Closure(cc.null_true_event, nullptr);
}
return Closure(cc.null_false_event, nullptr);
}
inline auto
dynamic_bfs_diffuse_predicate_func(ComputeCell& cc,
const Address addr,
actionType /* action_type_in */,
const ActionArgumentType args) -> Closure
{
INVOKE_HANDLER_3(dynamic_bfs_diffuse_predicate_T, cc, addr, args);
}
template<typename ghost_type>
inline auto
dynamic_bfs_diffuse_T(ComputeCell& cc, const Address addr, const ActionArgumentType args) -> Closure
{
// Get the hold of the parent ghost vertex. If it is ghost then simply perform diffusion.
auto* parent_recursive_parralel_vertex = static_cast<ghost_type*>(cc.get_object(addr));
bool this_is_ghost_vertex = parent_recursive_parralel_vertex->is_ghost_vertex;
auto* v = static_cast<BFSVertex<ghost_type>*>(cc.get_object(addr));
u_int32_t current_level = BFSVertex<ghost_type>::max_level;
if (this_is_ghost_vertex) {
BFSArguments const bfs_args = cca_get_action_argument<BFSArguments>(args);
current_level = bfs_args.level;
} else {
current_level = v->bfs_level;
}
BFSArguments level_to_send;
level_to_send.level = current_level;
level_to_send.src_vertex_id = v->id;
ActionArgumentType const args_for_ghost_vertices =
cca_create_action_argument<BFSArguments>(level_to_send);
// Note: The application vertex type is derived from the parent `RecursiveParallelVertex`
// therefore using the derived pointer. It works for both. First diffuse to the ghost vertices.
for (u_int32_t ghosts_iterator = 0; ghosts_iterator < ghost_type::ghost_vertices_max_degree;
ghosts_iterator++) {
if (v->ghost_vertices[ghosts_iterator].has_value()) {
cc.diffuse(Action(v->ghost_vertices[ghosts_iterator].value(),
addr,
actionType::application_action,
true,
args_for_ghost_vertices,
dynamic_bfs_predicate,
dynamic_bfs_work,
dynamic_bfs_diffuse_predicate,
dynamic_bfs_diffuse));
}
}
for (int i = 0; i < v->number_of_edges; i++) {
level_to_send.level = current_level + 1;
ActionArgumentType const args_x = cca_create_action_argument<BFSArguments>(level_to_send);
cc.diffuse(Action(v->edges[i].edge,
addr,
actionType::application_action,
true,
args_x,
dynamic_bfs_predicate,
dynamic_bfs_work,
dynamic_bfs_diffuse_predicate,
dynamic_bfs_diffuse));
}
return Closure(cc.null_false_event, nullptr);
}
inline auto
dynamic_bfs_diffuse_func(ComputeCell& cc,
const Address addr,
actionType /* action_type_in */,
const ActionArgumentType args) -> Closure
{
INVOKE_HANDLER_3(dynamic_bfs_diffuse_T, cc, addr, args);
}
template<typename ghost_type>
inline auto
dynamic_bfs_edge_insert_continuation_T(ComputeCell& cc,
const Address addr,
const ActionArgumentType args) -> Closure
{
BFSArgumentsEdgeInsertContinuation const bfs_args =
cca_get_action_argument<BFSArgumentsEdgeInsertContinuation>(args);
u_int32_t current_level = bfs_args.level;
/* if (current_level == BFSVertex<ghost_type>::max_level) {
std::cout << "undefined level Not diffusing the continuation\n";
return 0;
} */
BFSArguments level_to_send;
level_to_send.level = current_level + 1;
level_to_send.src_vertex_id = bfs_args.src_vertex_id;
ActionArgumentType const args_x = cca_create_action_argument<BFSArguments>(level_to_send);
/* std::cout << "dynamic_bfs_edge_insert_continuation_func || vertex: "
<< level_to_send.src_vertex_id << ", level to send: " << level_to_send.level
<< ", bfs_args.dst_vertex_addr: " << bfs_args.dst_vertex_addr << "\n";
*/
cc.diffuse(Action(bfs_args.dst_vertex_addr,
addr,
actionType::application_action,
true,
args_x,
dynamic_bfs_predicate,
dynamic_bfs_work,
dynamic_bfs_diffuse_predicate,
dynamic_bfs_diffuse));
return Closure(cc.null_false_event, nullptr);
}
inline auto
dynamic_bfs_edge_insert_continuation_func(ComputeCell& cc,
const Address addr,
actionType /* action_type_in */,
const ActionArgumentType args) -> Closure
{
INVOKE_HANDLER_3(dynamic_bfs_edge_insert_continuation_T, cc, addr, args);
}
inline void
configure_parser(cli::Parser& parser)
{
parser.set_required<std::string>("f", "graphfile", "Path to the input data graph file");
parser.set_required<std::string>("g",
"graphname",
"Name of the input graph used to set the name of the output "
"file. Example: Erdos or anything");
parser.set_required<std::string>("s", "shape", "Shape of the compute cell");
parser.set_required<u_int32_t>("root", "bfsroot", "Root vertex for Breadth First Search (BFS)");
parser.set_optional<bool>(
"verify",
"verification",
0,
"Enable verification of the calculated levels with the levels provided "
"in the accompanying .bfs file");
parser.set_optional<u_int32_t>("m",
"memory_per_cc",
1 * 512 * 1024,
"Memory per compute cell in bytes. Default is 0.5 MB");
parser.set_optional<std::string>(
"od", "outputdirectory", "./", "Path to the output file directory. Default: ./");
parser.set_optional<u_int32_t>(
"hx",
"htree_x",
3,
"Rows of Cells that are served by a single end Htree node. hx must be an odd value");
parser.set_optional<u_int32_t>(
"hy",
"htree_y",
5,
"Columns of Cells that are served by a single end Htree node. hy must be an odd value");
parser.set_optional<u_int32_t>("hdepth",
"htree_depth",
0,
"Depth of the Htree. This is the size of the Htree. \n\t0: No "
"Htree\n\t1: 1 Htree\n\t2: 5 Htrees "
"as it recurssively constructs more...");
parser.set_optional<u_int32_t>(
"hb",
"hbandwidth_max",
64,
"Max possible lanes in the htree joints. The htree is recursively constructred with end "
"nodes having 4 lanes (for sqaure cells) to the joint. Then in the next joint there are 8, "
"then 16 and so on. There needs to be a max value to avoid exponential growth.");
parser.set_optional<u_int32_t>(
"mesh", "mesh_type", 0, "Type of the mesh:\n\t0: Regular\n\t1: Torus.");
parser.set_optional<u_int32_t>("route", "routing_policy", 0, "Routing algorithm to use.");
parser.set_optional<u_int32_t>(
"increments", "dynamic_increments", 0, "How many times does that graph evolve.");
parser.set_optional<bool>(
"shuffle",
"shuffle_vertices",
0,
"Randomly shuffle the vertex list so as to avoid any pattern in the graph based on vertex "
"IDs. This appears to be the case for certain RMAT graphs.");
parser.set_optional<u_int32_t>("trail", "trail_number", 0, "Trail number for this experiment.");
}
struct BFSCommandLineArguments
{
// BFS root vertex
u_int32_t root_vertex{};
// Cross check the calculated bfs lengths from root with the lengths provided in .bfs file
bool verify_results{};
// Configuration related to the input data graph
std::string input_graph_path;
std::string graph_name;
// Optional output directory path
std::string output_file_directory;
// Get the depth of Htree.
u_int32_t hdepth{};
// Get the rows and columbs of cells that are served by a single end Htree node. This will
// help in construction of the CCA chip, Htree, and routing.
u_int32_t hx{};
u_int32_t hy{};
// Get the max bandwidth of Htree.
u_int32_t hbandwidth_max{};
// Configuration related to the CCA Chip.
std::string shape_arg;
computeCellShape shape_of_compute_cells;
// Get the memory per cc or use the default.
u_int32_t memory_per_cc{};
// Mesh type.
u_int32_t mesh_type{};
// Get the routing policy to use.
u_int32_t routing_policy{};
// Increments to the graph for dynamic graphs
u_int32_t increments{};
// To shuffle or to not shuffle the vertex ID list.
bool shuffle_switch{};
// Trail #. Used for taking multiple samples of the same configuations. Then can be averaged
// out.
u_int32_t trail_number{};
BFSCommandLineArguments(cli::Parser& parser)
: root_vertex(parser.get<u_int32_t>("root"))
, verify_results(parser.get<bool>("verify"))
, input_graph_path(parser.get<std::string>("f"))
, graph_name(parser.get<std::string>("g"))
, output_file_directory(parser.get<std::string>("od"))
, hdepth(parser.get<u_int32_t>("hdepth"))
, hx(parser.get<u_int32_t>("hx"))
, hy(parser.get<u_int32_t>("hy"))
, hbandwidth_max(parser.get<u_int32_t>("hb"))
, shape_arg(parser.get<std::string>("s"))
, shape_of_compute_cells(computeCellShape::computeCellShape_invalid)
, memory_per_cc(parser.get<u_int32_t>("m"))
, mesh_type(parser.get<u_int32_t>("mesh"))
, routing_policy(parser.get<u_int32_t>("route"))
, shuffle_switch(parser.get<bool>("shuffle"))
, increments(parser.get<u_int32_t>("increments"))
, trail_number(parser.get<u_int32_t>("trail"))
{
if (hdepth != 0) {
if (!(hx % 2)) {
std::cerr << "Invalid Input: hx must be odd! Provided value: " << hx << "\n";
exit(0);
}
if (!(hy % 2)) {
std::cerr << "Invalid Input: hy must be odd! Provided value: " << hy << "\n";
exit(0);
}
}
if (hdepth == 0) {
hbandwidth_max = 0;
}
if (shape_arg == "square") {
shape_of_compute_cells = computeCellShape::square;
} else {
std::cerr << "Error: Compute cell shape type " << shape_arg << " not supported.\n";
exit(0);
}
}
};
template<typename NodeType>
inline void
verify_results(const BFSCommandLineArguments& cmd_args,
Graph<NodeType>& input_graph,
const CCASimulator& cca_simulator,
const u_int32_t increment)
{
std::cout << "\nDynamic Breadth First Search Verification: \n";
// Open the file containing bfs results for verification.
std::string input_graph_inc_path =
cmd_args.input_graph_path + ".edgelist_" + std::to_string(increment);
std::string verfication_file_path = input_graph_inc_path + ".bfs";
std::ifstream file(verfication_file_path);
if (!file.is_open()) {
std::cout << "Failed to open the verification file: " << verfication_file_path << "\n";
} else {
std::vector<u_int32_t> control_results;
std::string line;
// Read the header.
std::getline(file, line);
// Read the root (source) of bfs that was used for results in the .bfs file.
// Initialize it to an invalid value first.
u_int32_t root_in_file = input_graph.total_vertices + 1;
std::getline(file, line);
if (!(std::istringstream(line) >> root_in_file)) {
std::cerr << "Invalid root (source) value.\n";
exit(0);
}
if (root_in_file != cmd_args.root_vertex) {
std::cerr << "root vertex in file and root vertex used to run the program miss match. "
"Please use the same root in both for verification. Failed!\n";
exit(0);
}
u_int32_t node_id;
u_int32_t bfs_value;
while (std::getline(file, line)) {
std::istringstream iss(line);
if (iss >> node_id >> bfs_value) {
// When there are vertices with in-degree zero then they are not present in the .bfs
// file. Therefore, we have to substitute its value with the undefined of
// `max_level` for the verification to work.
while (node_id != control_results.size()) {
control_results.emplace_back(undefined_level);
}
control_results.emplace_back(bfs_value);
} else {
// Parsing failed.
std::cerr << "Error parsing line: " << line
<< ", in file: " << verfication_file_path << std::endl;
}
}
file.close();
u_int32_t total_errors = 0;
for (u_int32_t i = 0; i < control_results.size(); i++) {
// Check for correctness. Print the level to a target test vertex. test_vertex
Address const test_vertex_addr = input_graph.get_vertex_address_in_cca(i);
auto* v_test = static_cast<BFSVertex<ghost_type_level_1>*>(
cca_simulator.get_object(test_vertex_addr));
// Assumes the result .bfs file is sorted.
bool equal = control_results[i] == v_test->bfs_level;
if (!equal) {
std::cout << "Vertex: " << i << ", Computed BFS: " << v_test->bfs_level
<< ", Control Value: " << control_results[i] << ", Not equal! Error\n";
total_errors++;
}
}
if (total_errors > 0) {
std::cout << ANSI_COLOR_RED << "Total number values error: " << total_errors
<< ", Verification Failed\n"
<< ANSI_COLOR_RESET;
} else {
std::cout << ANSI_COLOR_GREEN << "All values were correct. Verification Successful.\n"
<< ANSI_COLOR_RESET;
}
}
}
// Write simulation statistics to a file
template<typename NodeType>
inline void
write_results(const BFSCommandLineArguments& cmd_args,
Graph<NodeType>& input_graph,
CCASimulator& cca_simulator)
{
std::string const output_file_name = "dynamic_bfs_graph_" + cmd_args.graph_name + "_v_" +
std::to_string(input_graph.total_vertices) + "_e_" +
std::to_string(input_graph.total_edges) + "_trail_" +
std::to_string(cmd_args.trail_number) +
cca_simulator.key_configurations_string();
std::string const output_file_path = cmd_args.output_file_directory + "/" + output_file_name;
std::cout << "\nWriting results to output file: " << output_file_path << "\n";
std::ofstream output_file(output_file_path);
if (!output_file) {
std::cerr << "Error! Output file not created\n";
}
// Output input graph details in the header of the statistics for us to know which input graph
// it operated on.
output_file << "graph_file\tvertices\tedges\troot_vertex\n"
<< cmd_args.input_graph_path << "\t" << input_graph.total_vertices << "\t"
<< input_graph.total_edges << "\t" << cmd_args.root_vertex << "\n";
// Ask the simulator to print its statistics to the `output_file`.
cca_simulator.print_statistics(output_file);
// Close the output file
output_file.close();
// Print the animation of active status of each CC per cycle.
cca_simulator.print_animation(output_file_path);
}
#endif // CCA_BFS_HPP