-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvis_utils.py
65 lines (51 loc) · 2.04 KB
/
vis_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from PIL import Image, ImageDraw, ImageFont
import base64
import numpy as np
from io import BytesIO
import math
def image_formatter(img_path,size=224,vertical_align='middle'):
img = Image.open(img_path)
img.thumbnail((size,size), Image.ANTIALIAS)
with BytesIO() as buffer:
img.save(buffer, 'jpeg')
base64_img = base64.b64encode(buffer.getvalue()).decode()
return f'<img style="vertical-align:{vertical_align}" src="data:image/jpeg;base64,{base64_img}">'
def html_embed_image(img,size=100):
img = img.copy()
img.thumbnail((size,size), Image.ANTIALIAS)
with BytesIO() as buffer:
img.save(buffer, 'jpeg')
base64_img = base64.b64encode(buffer.getvalue()).decode()
return f'<img style="vertical-align:middle" src="data:image/jpeg;base64,{base64_img}">'
def html_colored_span(content,color):
return f"<span style='color: {color};'>{content}</span>"
def mask_image(img,mask):
mask = np.tile(mask[:,:,np.newaxis],(1,1,3))
img = np.array(img).astype(float)
img = np.array(mask*img).astype(np.uint8)
return Image.fromarray(img)
def image_grid(imgs,rows,cols):
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def vis_masks(img,objs,labels=None):
if len(objs)==0:
return Image.new('RGB',size=img.size)
imgs = []
for obj in objs:
obj_img = mask_image(img, obj['mask'])
canvas = ImageDraw.Draw(obj_img)
canvas.rectangle(obj['box'],outline='green',width=4)
imgs.append(obj_img)
if labels is not None:
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSansMono-Bold.ttf', 60)
for img,label in zip(imgs,labels):
canvas = ImageDraw.Draw(img)
canvas.text((0,0),label,fill='white',font=font)
cols=math.ceil(math.sqrt(len(imgs)))
cols=min(3,len(imgs))
rows=math.ceil(len(imgs)/3)
return image_grid(imgs, rows, cols)