-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaggregate_datasets.py
387 lines (339 loc) · 14.7 KB
/
aggregate_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import argparse
import json
import logging
import os
import multiprocessing
import re
from contextlib import contextmanager
from functools import partial
from math import ceil
from pathlib import Path
from typing import Dict, Union, Optional, List
import datasets
from dotenv import load_dotenv
from numpy import log10
from numpy.random import default_rng, SeedSequence
from datasets import concatenate_datasets, load_dataset, utils, Features, Value, Dataset
logger = logging.getLogger()
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s - %(name)-15s - %(levelname)-8s - %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
def parse_args():
parser = argparse.ArgumentParser()
# Load
parser.add_argument(
"--dataset_ratios_path",
type=str,
required=True,
help="path to JSON file containing input dataset ratios. Values ares dictionary: {'dataset_path': str, 'is_catalogue': bool, 'ratio': float}",
)
parser.add_argument("--split", type=str, default="train", help="split name, default 'train'")
parser.add_argument(
"--load_num_proc", type=int, default=1, help="number of procs to use for loading datasets, default 1"
)
# Shard
parser.add_argument("--shard_max_size", type=int, default=10_000_000_000, help="max shard size, default 10GB")
# Save
parser.add_argument("--save_path", type=str, default=".", help="path to save the dataset, default '.'")
parser.add_argument("--save_num_proc", type=int, default=1, help="number of procs to use for saving, default 1")
parser.add_argument("--save_batch_size", type=int, help="batch size used for saving")
# Parse args
args = parser.parse_args()
# Post-process args
args.dataset_ratios_path = Path(args.dataset_ratios_path)
args.save_path = Path(args.save_path)
return args
def convert_types(features):
if isinstance(features, dict) and "_type" in features:
return getattr(datasets, features["_type"])(features["dtype"])
elif isinstance(features, dict):
return {key: convert_types(value) for key, value in features.items()}
elif isinstance(features, list):
return [convert_types(value) for value in features]
def get_features():
features = {
"HtmlPreprocessor_error": {"dtype": "int64", "id": None, "_type": "Value"},
"HtmlPreprocessor_error_comment": {"dtype": "string", "id": None, "_type": "Value"},
"content_languages": {"dtype": "string", "id": None, "_type": "Value"},
"content_mime_detected": {"dtype": "string", "id": None, "_type": "Value"},
"depth": {"dtype": "int16", "id": None, "_type": "Value"},
"download_exception": {"dtype": "string", "id": None, "_type": "Value"},
"external_urls": [{"dtype": "string", "id": None, "_type": "Value"}],
"fetch_redirect": {"dtype": "string", "id": None, "_type": "Value"},
"fetch_status": {"dtype": "int32", "id": None, "_type": "Value"},
"fetch_time": {"dtype": "timestamp[ns]", "id": None, "_type": "Value"},
"html_error": {"dtype": "string", "id": None, "_type": "Value"},
"html_footer": [{"dtype": "string", "id": None, "_type": "Value"}],
"html_head": [{"dtype": "string", "id": None, "_type": "Value"}],
"html_str": {"dtype": "string", "id": None, "_type": "Value"},
"html_title": [{"dtype": "string", "id": None, "_type": "Value"}],
"metadata_html": [
{
"char_end_idx": {"dtype": "int64", "id": None, "_type": "Value"},
"char_start_idx": {"dtype": "int64", "id": None, "_type": "Value"},
"html_attrs": {
"attrs": [{"dtype": "string", "id": None, "_type": "Value"}],
"values": [{"dtype": "string", "id": None, "_type": "Value"}],
},
"key": {"dtype": "string", "id": None, "_type": "Value"},
"relative_end_pos": {"dtype": "int64", "id": None, "_type": "Value"},
"relative_start_pos": {"dtype": "int64", "id": None, "_type": "Value"},
"type": {"dtype": "string", "id": None, "_type": "Value"},
"value": {"dtype": "string", "id": None, "_type": "Value"},
}
],
"seed_id": {"dtype": "int32", "id": None, "_type": "Value"},
"text": {"dtype": "string", "id": None, "_type": "Value"},
"url": {"dtype": "string", "id": None, "_type": "Value"},
"url_host_name": {"dtype": "string", "id": None, "_type": "Value"},
"url_host_registered_domain": {"dtype": "string", "id": None, "_type": "Value"},
"url_host_tld": {"dtype": "string", "id": None, "_type": "Value"},
"url_surtkey": {"dtype": "string", "id": None, "_type": "Value"},
"warc_filename": {"dtype": "string", "id": None, "_type": "Value"},
"warc_record_length": {"dtype": "int32", "id": None, "_type": "Value"},
"warc_record_offset": {"dtype": "int32", "id": None, "_type": "Value"},
}
return Features(convert_types(features))
def collapse_meta_(batch):
"""{"text": str, "meta": str}"""
# TODO: check that
columns_not_in_meta = ["text", "html_error", "html_footer", "html_head", "html_str", "html_title", "metadata_html"]
columns_to_collapse = [name for name in batch.keys() if name not in columns_not_in_meta]
number_of_rows = len(batch["text"])
metas = [
{
**{name: batch[name][i] for name in columns_to_collapse},
"source_dataset": f"pseudo-crawl--{batch['seed_id'][i]}",
}
for i in range(number_of_rows)
]
new_batch = {"text": batch["text"], "meta": [str(meta) for meta in metas]}
return new_batch
def collapse_meta(ds: Dataset, num_proc: int):
"""{"text": str, "meta": str}"""
columns_to_keep = ["text"]
column_names_to_remove = [name for name in ds.column_names if name not in columns_to_keep]
return ds.map(collapse_meta_, batched=True, num_proc=num_proc, remove_columns=column_names_to_remove)
def process_single_catalogue_meta_(meta: Optional[Union[str, Dict]], source_dataset) -> str:
if meta is None:
meta = {}
elif isinstance(meta, str):
meta = eval(meta)
try:
meta["source_dataset"] = source_dataset
except:
raise ValueError(f"Got {meta} of type {type(meta)}. Expected an dictionary. This is from {source_dataset}")
return str(meta)
def process_catalogue_meta(batch, source_dataset=None, columns_not_in_meta_or_text=None):
num_elts = len(batch[next(iter(batch.keys()))])
default_meta = process_single_catalogue_meta_(None, source_dataset)
# If other columns exist we put them into meta
if columns_not_in_meta_or_text:
if "meta" not in batch:
batch["meta"] = [{} for _ in range(num_elts)]
batch["meta"] = [
{
**(batch["meta"][index]),
**{column_name: batch[column_name][index] for column_name in columns_not_in_meta_or_text}
}
for index in range(num_elts)
]
if "meta" in batch:
batch["meta"] = [process_single_catalogue_meta_(meta, source_dataset) for meta in batch["meta"]]
else:
batch["meta"] = [default_meta for _ in range(num_elts)]
return {"text": batch["text"], "meta": batch["meta"]}
def load_single_dataset(args):
try:
ds_ratio, split, seed, num_proc = args
ds_name = ds_ratio["dataset_path"]
ratio = ds_ratio["ratio"]
is_catalogue = ds_ratio["is_catalogue"]
# Load
if is_catalogue:
ds = load_dataset(ds_name, use_auth_token=True, ignore_verifications=True)
else:
# We assume it comes from pseudo crawl.
# Pseudo crawl needs to be downloaded locally beforehand.
features = get_features()
dataset_path = Path(ds_name)
ds = load_dataset(
str((dataset_path / "text__html").absolute()), data_files="**.jsonl.gz", features=features
)
# Split
if split not in ds:
logger.info(f"No split named {split} in dataset {ds_name}")
return
ds = ds[split]
# Sample dataset
if ratio < 1:
num_samples = int(len(ds) * ratio)
if num_samples == 0:
return None
rng = default_rng(seed)
indices = rng.choice(len(ds), size=num_samples, replace=False, shuffle=False)
ds = ds.select(indices)
# Process meta: add source_dataset and cast dict to str
if is_catalogue:
columns_not_in_meta_or_text = [column_name for column_name in ds.column_names if column_name not in ["text", "meta"]]
source_dataset = re.match(r".*bigscience-catalogue-lm-data/(lm_([^/])*)(/data)?", ds_name).group(1)
ds = ds.map(
partial(process_catalogue_meta, source_dataset=source_dataset, columns_not_in_meta_or_text=columns_not_in_meta_or_text),
batched=True,
num_proc=num_proc,
desc=f"Processing {ds_name}",
remove_columns=columns_not_in_meta_or_text
)
else:
# collapse all meta data in "meta" column
ds = collapse_meta(ds, num_proc=num_proc)
return ds
except BaseException as err:
logger.error(f"Error while loading dataset {ds_name}")
raise err
def compute_number_of_shards(ds, max_size=10_000_000_000):
ds_nbytes = get_size(ds)
logger.info(f"Estimated dataset size: {ds_nbytes} bytes")
logger.info(f"Max shard size: {max_size} bytes")
number_shards = ceil(ds_nbytes / max_size)
return number_shards if number_shards < len(ds) else len(ds)
def get_shard(shard_id: int, number_shards: int, ds: Dataset) -> Dataset:
logger.info(f"Shard {shard_id}/{number_shards}")
shard = ds.shard(num_shards=number_shards, index=shard_id, contiguous=True)
return shard
def shard_dataset(ds, num_proc, max_size=10_000_000_000):
number_shards = compute_number_of_shards(ds, max_size=max_size)
if number_shards <= 1:
return [ds]
logger.info(f"Shard dataset in {number_shards} shards")
shards = []
for shard_id in range(number_shards):
shard = get_shard(shard_id=shard_id, number_shards=number_shards, ds=ds)
shards.append(shard)
# # Parallel version
# with multiprocessing.Pool(min(number_shards, num_proc)) as pool:
# shards = [
# ds
# for ds in utils.tqdm(
# pool.imap(
# partial(get_shard, ds=ds, number_shards=number_shards),
# range(number_shards),
# ),
# total=number_shards,
# unit="ba",
# disable=bool(utils.logging.get_verbosity() == utils.logging.NOTSET),
# desc="Sharding dataset",
# )
# if ds is not None
# ]
return shards
def save_shards(shards, path=Path("."), num_proc=1, batch_size=None):
path.mkdir(parents=True, exist_ok=True)
num_shards = len(shards)
# for i, shard in enumerate(shards):
# save_dataset(shard, path=path, shard_id=i, num_shards=num_shards, num_proc=num_proc, batch_size=batch_size)
# Parallel version
with multiprocessing.Pool(min(num_shards, num_proc)) as pool:
pool.starmap(
save_dataset,
[
(shard, path, shard_id, num_shards, 1, batch_size)
for shard_id, shard in enumerate(shards)
]
)
def save_dataset(shard: Dataset, path=Path("."), shard_id=0, num_shards=1, num_proc=1, batch_size=None):
width = int(log10(num_shards)) + 1
save_path = path / f"shard-{shard_id:0>{width}}-of-{num_shards:0>{width}}.jsonl.gz"
if save_path.exists():
logger.info(f"Shard was already saved: {save_path}")
return
with tmp_path(save_path) as tmp_save_path:
shard.to_json(
tmp_save_path,
num_proc=num_proc,
batch_size=batch_size,
)
@contextmanager
def tmp_path(path):
try:
tmp_path = path.with_name(f"tmp-{path.name}")
yield tmp_path
except:
tmp_path.unlink(missing_ok=True)
else:
tmp_path.rename(path)
def get_size(ds: Dataset) -> int:
if ds._indices is not None:
return ds.data.nbytes * len(ds._indices) / len(ds.data)
else:
return ds.data.nbytes
def load_datasets(dset_ratios: List, num_proc: int, split: str, seed: SeedSequence) -> List[Dataset]:
logger.info("Start load_datasets")
# dsets = [
# ds
# for ds in utils.tqdm(
# [
# load_single_dataset((dset_ratio, split, child_seed, num_proc))
# for dset_ratio, child_seed in zip(dset_ratios, seed.spawn(len(dset_ratios)))
# ],
# total=len(dset_ratios),
# unit="ba",
# disable=bool(utils.logging.get_verbosity() == utils.logging.NOTSET),
# desc="Loading dataset",
# )
# if ds is not None
# ]
# Parallel version
with multiprocessing.Pool(num_proc) as pool:
dsets = [
ds
for ds in utils.tqdm(
pool.imap(
load_single_dataset,
[
(dset_ratio, split, child_seed, 1)
for dset_ratio, child_seed in zip(dset_ratios, seed.spawn(len(dset_ratios)))
],
),
total=len(dset_ratios),
unit="ba",
disable=bool(utils.logging.get_verbosity() == utils.logging.NOTSET),
desc="Loading dataset",
)
if ds is not None
]
return dsets
def main():
args = parse_args()
# Init
# Env variables
if Path(".env").exists:
load_dotenv()
# Random generator
seed = SeedSequence(42)
# Read dataset ratios
with args.dataset_ratios_path.open() as f:
dset_ratios = json.load(f)
# Load datasets
dsets = load_datasets(dset_ratios, args.load_num_proc, args.split, seed)
if not dsets:
logger.info(f"No datasets to be aggregated")
return
# Concatenate datasets
logger.info("Start concatenate_datasets")
dset = concatenate_datasets(dsets, split=args.split)
del dsets
logger.info(f"Estimated size: {get_size(dset)} bytes")
# Shuffle
logger.info("Start shuffle dataset")
dset = dset.shuffle(seed=seed)
# Shard
logger.info("Start shard_dataset")
shards = shard_dataset(dset, num_proc=args.load_num_proc, max_size=args.shard_max_size)
# Save
logger.info("Start: save dataset")
save_shards(shards, path=args.save_path, num_proc=args.save_num_proc, batch_size=args.save_batch_size)
if __name__ == "__main__":
main()