-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathGraphPPIS_predict.py
349 lines (282 loc) · 12.9 KB
/
GraphPPIS_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os, pickle, datetime, argparse, string
import numpy as np
import pandas as pd
from Model.model import *
# Set these paths to your own paths
# Note that in UR90, 'uniref90' (last of the variable) is the prefix of the built database files in the database folder. Same does HHDB.
UR90 = "/bigdat1/pub/yuanqm/uniref90_2018_06/uniref90"
HHDB = "/bigdat1/pub/uniclust30/uniclust30_2017_10/uniclust30_2017_10"
Software_path = "/data2/users/yuanqm/PPI/Software/"
PSIBLAST = Software_path + "ncbi-blast-2.10.1+/bin/psiblast"
HHBLITS = Software_path + "hhsuite-3.0.3/bin/hhblits"
DSSP = Software_path + "dssp-3.1.4/mkdssp"
aa = ["ALA", "CYS", "ASP", "GLU", "PHE", "GLY", "HIS", "ILE", "LYS", "LEU",
"MET", "ASN", "PRO", "GLN", "ARG", "SER", "THR", "VAL", "TRP", "TYR"]
aa_abbr = [x for x in "ACDEFGHIKLMNPQRSTVWY"]
aa_dict = dict(zip(aa, aa_abbr))
# BLOSUM62
Max_blosum = np.array([4, 5, 6, 6, 9, 5, 5, 6, 8, 4, 4, 5, 5, 6, 7, 4, 5, 11, 7, 4])
Min_blosum = np.array([-3, -3, -4, -4, -4, -3, -4, -4, -3, -4, -4, -3, -3, -4, -4, -3, -2, -4, -3, -3])
# These values are observed in the training sets in our paper
Max_pssm = np.array([8, 9, 9, 9, 12, 9, 8, 8, 12, 9, 7, 9, 11, 10, 9, 8, 8, 13, 10, 8])
Min_pssm = np.array([-11,-12,-13,-13,-12,-13,-13,-12,-13,-13,-13,-13,-12,-12,-13,-12,-12,-13,-13,-12])
Max_hhm = np.array([10655,12141,12162,11354,11802,11835,11457,11686,11806,11262,11571,11979,12234,11884,11732,11508,11207,11388,12201,11743])
Min_hhm = np.zeros(20)
error_code_dic = {"PDB not exist": 1, "chain not exist": 2, "PDB_seq & dismap_seq mismatch": 3, "DSSP too long": 4, "Fail to pad DSSP": 5}
def get_PDB(PDBID, pdb_file, chain, data_path):
ID = PDBID + chain
if PDBID == "user" and pdb_file != "": # User custom PDB file
os.system("mv {} {}".format(pdb_file, os.path.dirname(pdb_file) + "/user.pdb"))
os.system("perl getchain.pl {} {}".format(os.path.dirname(pdb_file), ID))
else:
os.system("wget -P {} http://www.rcsb.org/pdb/files/{}.pdb.gz".format(data_path, PDBID))
if os.path.exists(data_path + "{}.pdb.gz".format(PDBID)) == False:
return "", error_code_dic["PDB not exist"]
os.system("perl getchain.pl {} {}".format(data_path, ID))
os.system("mv {} {}".format(ID, data_path)) # the output of getchain.pl is in current directory
seq = ""
current_pos = -1000
with open(data_path + ID, "r") as f:
lines = f.readlines()
for line in lines:
if line[0:4].strip() == "ATOM" and int(line[22:26].strip()) != current_pos:
aa_type = line[17:20].strip()
seq += aa_dict[aa_type]
current_pos = int(line[22:26].strip())
if seq == "":
return "", error_code_dic["chain not exist"]
else:
return seq, 0
def process_distance_map(distance_map_file, cutoff = 14):
with open(distance_map_file, "r") as f:
lines = f.readlines()
seq = lines[0].strip()
length = len(seq)
distance_map = np.zeros((length, length))
if lines[1][0] == "#": # missed residues
missed_idx = [int(x) for x in lines[1].split(":")[1].strip().split()] # 0-based
lines = lines[2:]
else:
missed_idx = []
lines = lines[1:]
for i in range(0, len(lines)):
record = lines[i].strip().split()
for j in range(0, len(record)):
if float(record[j]) == -1:
distance_map[i + 1][j] = 0
elif float(record[j]) <= cutoff:
distance_map[i + 1][j] = 1
else:
distance_map[i + 1][j] = 0
for idx in missed_idx:
if idx > 0:
distance_map[idx][idx - 1] = 1
if idx > 1:
distance_map[idx][idx - 2] = 1
if idx < length - 1:
distance_map[idx + 1][idx] = 1
if idx < length - 2:
distance_map[idx + 2][idx] = 1
distance_map = distance_map + distance_map.T + np.eye(length)
return seq, distance_map
def get_distance_map(ID, PDB_seq, data_path):
os.system("./caldis_CA {} > {}.map".format(data_path + ID, data_path + "dismap/" + ID))
dis_map_seq, dis_map = process_distance_map(data_path + "dismap/" + ID + ".map")
if PDB_seq != dis_map_seq:
return error_code_dic["PDB_seq & dismap_seq mismatch"]
else:
np.save(data_path + "dismap/" + ID, dis_map)
return 0
def process_dssp(dssp_file):
aa_type = "ACDEFGHIKLMNPQRSTVWY"
SS_type = "HBEGITSC"
rASA_std = [115, 135, 150, 190, 210, 75, 195, 175, 200, 170,
185, 160, 145, 180, 225, 115, 140, 155, 255, 230]
with open(dssp_file, "r") as f:
lines = f.readlines()
seq = ""
dssp_feature = []
p = 0
while lines[p].strip()[0] != "#":
p += 1
for i in range(p + 1, len(lines)):
aa = lines[i][13]
if aa == "!" or aa == "*":
continue
seq += aa
SS = lines[i][16]
if SS == " ":
SS = "C"
SS_vec = np.zeros(9) # The last dim represents "Unknown" for missing residues
SS_vec[SS_type.find(SS)] = 1
PHI = float(lines[i][103:109].strip())
PSI = float(lines[i][109:115].strip())
ACC = float(lines[i][34:38].strip())
ASA = min(100, round(ACC / rASA_std[aa_type.find(aa)] * 100)) / 100
dssp_feature.append(np.concatenate((np.array([PHI, PSI, ASA]), SS_vec)))
return seq, np.array(dssp_feature)
def pad_dssp(seq, feature, ref_seq): # ref_seq is longer
padded_feature = []
SS_vec = np.zeros(9) # The last dim represent "Unknown" for missing residues
SS_vec[-1] = 1
padded_item = np.concatenate((np.array([360, 360, 0]), SS_vec))
p_ref = 0
for i in range(len(seq)):
while p_ref < len(ref_seq) and seq[i] != ref_seq[p_ref]:
padded_feature.append(padded_item)
p_ref += 1
if p_ref < len(ref_seq): # aa matched
padded_feature.append(feature[i])
p_ref += 1
else: # miss match!
return np.array([])
if len(padded_feature) != len(ref_seq):
for i in range(len(ref_seq) - len(padded_feature)):
padded_feature.append(padded_item)
return np.array(padded_feature)
def transform_dssp(dssp_feature):
angle = dssp_feature[:,0:2]
ASA_SS = dssp_feature[:,2:]
radian = angle * (np.pi / 180)
dssp_feature = np.concatenate([np.sin(radian), np.cos(radian), ASA_SS], axis = 1)
return dssp_feature
def get_dssp(ID, PDB_seq, data_path):
os.system("{} -i {} -o {}.dssp".format(DSSP, data_path + ID, data_path + "dssp/" + ID))
dssp_seq, dssp_matrix = process_dssp(data_path + "dssp/" + ID + ".dssp")
if len(dssp_seq) > len(PDB_seq):
return error_code_dic["DSSP too long"]
elif len(dssp_seq) < len(PDB_seq):
padded_dssp_matrix = pad_dssp(dssp_seq, dssp_matrix, PDB_seq)
if len(padded_dssp_matrix) == 0:
return error_code_dic["Fail to pad DSSP"]
else:
np.save(data_path + "dssp/" + ID, transform_dssp(padded_dssp_matrix))
else:
np.save(data_path + "dssp/" + ID, transform_dssp(dssp_matrix))
return 0
def process_pssm(pssm_file):
with open(pssm_file, "r") as f:
lines = f.readlines()
pssm_feature = []
for line in lines:
if line == "\n":
continue
record = line.strip().split()
if record[0].isdigit():
pssm_feature.append([int(x) for x in record[2:22]])
pssm_feature = (np.array(pssm_feature) - Min_pssm) / (Max_pssm - Min_pssm)
return pssm_feature
def process_hhm(hhm_file):
with open(hhm_file, "r") as f:
lines = f.readlines()
hhm_feature = []
p = 0
while lines[p][0] != "#":
p += 1
p += 5
for i in range(p, len(lines), 3):
if lines[i] == "//\n":
continue
feature = []
record = lines[i].strip().split()[2:-1]
for x in record:
if x == "*":
feature.append(9999)
else:
feature.append(int(x))
hhm_feature.append(feature)
hhm_feature = (np.array(hhm_feature) - Min_hhm) / (Max_hhm - Min_hhm)
return hhm_feature
def BLOSUM_embedding(ID, seq, data_path):
seq_embedding = []
with open("blosum_dict.pkl", "rb") as f:
blosum_dict = pickle.load(f)
for aa in seq:
seq_embedding.append(blosum_dict[aa])
seq_embedding = (np.array(seq_embedding) - Min_blosum) / (Max_blosum - Min_blosum)
np.save(data_path + "blosum/" + ID, seq_embedding)
def MSA(ID, data_path):
os.system("{0} -db {1} -num_iterations 3 -num_alignments 1 -num_threads 2 -query {3}{2}.fa -out {3}{2}.bla -out_ascii_pssm {3}pssm/{2}.pssm".format(PSIBLAST, UR90, ID, data_path))
os.system("{0} -i {2}{1}.fa -ohhm {2}hhm/{1}.hhm -oa3m {2}{1}.a3m -d {3} -v 0 -maxres 40000 -cpu 6 -Z 0 -o {2}{1}.hhr".format(HHBLITS, ID, data_path, HHDB))
pssm_matrix = process_pssm(data_path + "pssm/" + ID + ".pssm")
np.save(data_path + "pssm/" + ID, pssm_matrix)
hhm_matrix = process_hhm(data_path + "hhm/" + ID + ".hhm")
np.save(data_path + "hhm/" + ID, hhm_matrix)
def feature_extraction(PDBID, pdb_file, chain, mode, data_path):
ID = PDBID + chain
PDB_seq, error_code = get_PDB(PDBID, pdb_file, chain, data_path)
if error_code != 0:
return error_code
with open(data_path + ID + ".fa", "w") as f:
f.write(">" + ID + "\n" + PDB_seq)
if mode == "fast":
BLOSUM_embedding(ID, PDB_seq, data_path)
else:
MSA(ID, data_path)
error_code = get_dssp(ID, PDB_seq, data_path)
if error_code != 0:
return error_code
error_code = get_distance_map(ID, PDB_seq, data_path)
if error_code != 0:
return error_code
return 0
def predict(ID, data_path, mode):
with open(data_path + ID + ".fa", "r") as f:
seq = f.readlines()[1].strip()
test_dataframe = pd.DataFrame({"ID": [ID]})
pred_scores = [round(score, 4) for score in test(test_dataframe, data_path, mode)]
GraphPPIS_threshold = (0.24 if mode == "fast" else 0.18)
binary_preds = [1 if score >= GraphPPIS_threshold else 0 for score in pred_scores]
with open(data_path + ID + "_pred_results.txt", "w") as f:
f.write("The threshold of the predictive score to determine PPI sites is set to {}.\n".format(GraphPPIS_threshold))
f.write("AA\tProb\tPred\n")
for i in range(len(seq)):
f.write(seq[i] + "\t" + str(pred_scores[i]) + "\t" + str(binary_preds[i]) + "\n")
def main(PDBID, pdb_file, chain, mode):
PDBID = PDBID.lower()
chain = chain.upper()
ID = PDBID + chain
jobID = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
data_path = "./data_{}/".format(jobID)
if mode == "fast":
dir_list = ["", "blosum/", "dssp/", "dismap/"]
else:
dir_list = ["", "pssm/", "hhm/", "dssp/", "dismap/"]
for dir_name in dir_list:
os.makedirs(data_path + dir_name)
print("\nFeature extraction begins at {}.\n".format(datetime.datetime.now().strftime("%m-%d %H:%M")))
error_code = feature_extraction(PDBID, pdb_file, chain, mode, data_path)
if error_code == 1:
print("\nError! The query protein dosen't exist!")
elif error_code == 2:
print("\nError! The query chain dosen't exist in this protein!")
elif error_code != 0:
print("Error! Error code {}. Please contact the authors of GraphPPIS.".format(error_code))
else:
print("\nFeature Extraction is done at {}.\n".format(datetime.datetime.now().strftime("%m-%d %H:%M")))
print("Predicting...\n")
predict(ID, data_path, mode)
print("Done!")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--protein", type = str, help = "PDBID (e.g. 3mcb)")
parser.add_argument("-f", "--file", type = str, help = "PDB file (.pdb only)")
parser.add_argument("-c", "--chain", type = str, help = "chain identifier")
parser.add_argument("-m", "--mode", type = str, default = "fast", help = "fast (use BLOSUM62 + DSSP) or slow (use PSSM + HMM + DSSP)")
args = parser.parse_args()
if args.chain == None:
print("Chain identifier is not provided!")
elif args.chain not in list(string.ascii_letters + string.digits):
print("Invalid chain identifier!")
elif args.mode not in ["fast", "slow"]:
print("Invalid mode!")
elif args.file: # input by file
if args.file.endswith(".pdb") == False:
print("only .pdb file is supported!")
else:
main("user", args.file, args.chain, args.mode)
else: # input by PDBID
if args.protein == None or len(args.protein) != 4:
print("Invalid PDB ID!")
else:
main(args.protein, "", args.chain, args.mode)