-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdownstream_model.py
121 lines (103 loc) · 4.08 KB
/
downstream_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import torch
import torch.nn as nn
import torch.nn.functional as F
import pytorch_lightning as pl
from torchmetrics.functional import auroc
from torchvision import models
class MammoNet(pl.LightningModule):
def __init__(
self, num_classes, backbone="resnet18", learning_rate=0.0001, checkpoint=None
):
super().__init__()
self.num_classes = num_classes
self.lr = learning_rate
self.backbone = backbone
# Default model is a ResNet-18 pre-trained on ImageNet
if self.backbone == "resnet18":
self.model = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)
elif self.backbone == "resnet34":
self.model = models.resnet34(weights=models.ResNet34_Weights.DEFAULT)
elif self.backbone == "resnet50":
self.model = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)
# self.model.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
num_features = self.model.fc.in_features
self.model.fc = nn.Linear(num_features, self.num_classes)
if checkpoint is not None:
print(self.model.load_state_dict(state_dict=checkpoint, strict=False))
def forward(self, x):
return self.model.forward(x)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
return optimizer
def process_batch(self, batch):
img, lab = batch["image"], batch["label"]
out = self.forward(img)
prd = torch.softmax(out, dim=1)
loss = F.cross_entropy(out, lab)
return loss, prd, lab
def on_train_epoch_start(self):
self.train_preds = []
self.train_trgts = []
def training_step(self, batch, batch_idx):
loss, prd, lab = self.process_batch(batch)
self.log("train_loss", loss, batch_size=lab.shape[0])
self.train_preds.append(prd.detach().cpu())
self.train_trgts.append(lab.detach().cpu())
return loss
def on_train_epoch_end(self):
self.train_preds = torch.cat(self.train_preds, dim=0)
self.train_trgts = torch.cat(self.train_trgts, dim=0)
auc = auroc(
self.train_preds,
self.train_trgts,
num_classes=self.num_classes,
average="macro",
task="multiclass",
)
self.log("train_auc", auc)
self.train_preds = []
self.train_trgts = []
def on_validation_epoch_start(self):
self.val_preds = []
self.val_trgts = []
def validation_step(self, batch, batch_idx):
loss, prd, lab = self.process_batch(batch)
self.log("val_loss", loss, batch_size=lab.shape[0])
self.val_preds.append(prd.detach().cpu())
self.val_trgts.append(lab.detach().cpu())
def on_validation_epoch_end(self):
self.val_preds = torch.cat(self.val_preds, dim=0)
self.val_trgts = torch.cat(self.val_trgts, dim=0)
auc = auroc(
self.val_preds,
self.val_trgts,
num_classes=self.num_classes,
average="macro",
task="multiclass",
)
self.log("val_auc", auc)
self.val_preds = []
self.val_trgts = []
def on_test_epoch_start(self):
self.test_preds = []
self.test_trgts = []
self.test_study_ids = []
self.test_image_ids = []
def test_step(self, batch, batch_idx):
loss, prd, lab = self.process_batch(batch)
self.log("test_loss", loss, batch_size=lab.shape[0])
self.test_preds.append(prd.detach().cpu())
self.test_trgts.append(lab.detach().cpu())
self.test_study_ids.append(batch["study_id"])
self.test_image_ids.append(batch["image_id"])
def on_test_epoch_end(self):
self.test_preds = torch.cat(self.test_preds, dim=0)
self.test_trgts = torch.cat(self.test_trgts, dim=0)
auc = auroc(
self.test_preds,
self.test_trgts,
num_classes=self.num_classes,
average="macro",
task="multiclass",
)
self.log("test_auc", auc)