-
Notifications
You must be signed in to change notification settings - Fork 6
/
demo.py
449 lines (349 loc) · 13.9 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
"""DeMo: Decoupled Momentum Optimization
This implements the DeMo fused optimizer and data parallel algorithm.
It is recommended to use DeMo as the base data parallelism.
In an exisiting codebase that uses PyTorch DDP, wrap your forward-backward in
`torch.distributed.DistributedDataParallel.no_sync` to disable external gradient synchronization.
See https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel.no_sync
"""
import math
import torch
import torch.fft
import torch.distributed as dist
from einops import rearrange
from typing import Optional, Callable
class DeMo(torch.optim.SGD):
def __init__(
self,
params,
compression_decay: float = 0.999,
compression_topk: int = 32,
compression_chunk: int = 64,
weight_decay: float = 0.0,
process_group: Optional[dist.ProcessGroup] = None,
**kwargs,
):
super().__init__(
params,
foreach=False,
momentum=0.0,
dampening=0.0,
nesterov=False,
maximize=False,
weight_decay=0.0,
**kwargs,
)
self.compression_decay = compression_decay
self.compression_chunk = compression_chunk
self.compression_topk = compression_topk
self.process_group = process_group
self.weight_decay = weight_decay
if self.compression_topk <= 0:
raise ValueError("topk_size has to be positive")
if self.compression_chunk <= 0:
raise ValueError("chunk_size has to be positive")
if self.compression_decay < 0:
raise ValueError("Negative compression_decay is currently not supported")
if self.compression_decay >= 1:
raise ValueError("Values of compression_decay bigger or equal to 1.0 is currently not supported")
self.demo_state = {}
self._init_demo_states()
self._init_opt_parameters()
self.default_dtype = self._find_dtype()
self.transform = TransformDCT(self.param_groups, self.compression_chunk)
self.compress = CompressDCT()
def _find_dtype(self):
for group in self.param_groups:
for p in group["params"]:
if p.requires_grad:
return p.dtype
return torch.float32
def _init_demo_states(self):
for group in self.param_groups:
for p in group["params"]:
if p.requires_grad:
self.demo_state[p] = {}
def _state_parameter(self, p):
if p not in self.demo_state:
self.demo_state[p] = {}
return self.demo_state[p]
def _init_opt_parameters(self):
for group in self.param_groups:
for p in group["params"]:
if p.requires_grad:
state = self._state_parameter(p)
state["step"] = 0
state["delta"] = torch.zeros_like(p)
def _demo_all_gather(self, sparse_idx, sparse_val):
world_size = dist.get_world_size() if self.process_group is None else self.process_group.size()
# Gather all the idx and vals
sparse_idx_list = [torch.zeros_like(sparse_idx) for wi in range(world_size)]
sparse_val_list = [torch.zeros_like(sparse_val) for wi in range(world_size)]
sparse_idx_handle = dist.all_gather(sparse_idx_list, sparse_idx, group=self.process_group, async_op=True)
sparse_val_handle = dist.all_gather(sparse_val_list, sparse_val, group=self.process_group, async_op=True)
sparse_idx_handle.wait()
sparse_val_handle.wait()
return sparse_idx_list, sparse_val_list
@torch.no_grad()
def step(self, closure: Callable | None = None):
self.data_transmit = 0
self.data_receive = 0
for group in self.param_groups:
lr = group["lr"]
for p in group["params"]:
if not p.requires_grad:
continue
state = self._state_parameter(p)
# Update step
state["step"] += 1
# Step-Weight decay
if self.weight_decay != 0.0:
p.data.mul_(1.0 - lr * self.weight_decay)
# Decay delta
if self.compression_decay != 1:
state["delta"].mul_(self.compression_decay)
# Add delta to new gradient
state["delta"].add_(p.grad, alpha=lr)
# Compress delta
sparse_idx, sparse_val, xshape, totalk = self.compress.compress(
self.transform.encode(state["delta"]), self.compression_topk
)
# Estimate transmitted delta
transmit_grad = self.transform.decode(
self.compress.decompress(p, sparse_idx, sparse_val, xshape, totalk)
)
# Remove transmitted from delta
state["delta"].sub_(transmit_grad)
# All-gather
sparse_idx_gather, sparse_val_gather = self._demo_all_gather(sparse_idx, sparse_val)
# Log I/O data size
self.data_transmit += sparse_idx.nbytes + sparse_val.nbytes
for si, v in zip(sparse_idx_gather, sparse_val_gather):
self.data_receive += si.nbytes + v.nbytes
# Decode grad from all nodes
new_grad = self.transform.decode(
self.compress.batch_decompress(p, sparse_idx_gather, sparse_val_gather, xshape, totalk)
)
# Set grad to values
if p.grad is None:
p.grad = new_grad
else:
p.grad.copy_(new_grad)
# Sign-SGD
p.grad.sign_()
# SGD step
return super().step(closure)
class TransformDCT:
@torch.no_grad()
def __init__(self, param_groups, target_chunk, norm="ortho"):
self.target_chunk = target_chunk
self.shape_dict = dict()
self.f_dict = dict()
self.b_dict = dict()
# Get all variants of model tensor sizes
# Generate all possible valid DCT sizes for model tensors
for group in param_groups:
for p in group["params"]:
if not p.requires_grad:
continue
for s in p.shape:
# Get the closest smallest divisor to the targeted DCT size
sc = _get_smaller_split(s, self.target_chunk)
self.shape_dict[s] = sc
# Pregenerate DCT basis matrices
if sc not in self.f_dict:
I = torch.eye(sc)
self.f_dict[sc] = _dct(I, norm=norm).to(p.dtype).to(p.device)
self.b_dict[sc] = _idct(I, norm=norm).to(p.dtype).to(p.device)
@torch.no_grad()
def einsum_2d(self, x, b, d=None):
if d is None:
return torch.einsum("...ij, jb -> ...ib", x, b)
else:
# Note: b-c axis output is transposed to chunk DCT in 2D
return torch.einsum("...ijkl, jb, ld -> ...ikbd", x, b, d)
@torch.no_grad()
def einsum_2d_t(self, x, b, d=None):
if d is None:
return torch.einsum("...ij, jb -> ...ib", x, b)
else:
# Note: b-c axis output is transposed to chunk DCT in 2D
return torch.einsum("...ijkl, kb, ld -> ...ibjd", x, b, d)
@torch.no_grad()
def encode(self, x):
if len(x.shape) > 1: # 2D weights
n1 = self.shape_dict[x.shape[0]]
n2 = self.shape_dict[x.shape[1]]
n1w = self.f_dict[n1].to(x.device)
n2w = self.f_dict[n2].to(x.device)
self.f_dict[n1] = n1w
self.f_dict[n2] = n2w
x = rearrange(x, "(y h) (x w) -> y h x w", h=n1, w=n2)
x = self.einsum_2d(x, n1w, n2w)
else: # 1D weights
n1 = self.shape_dict[x.shape[0]]
n1w = self.f_dict[n1].to(x.device)
self.f_dict[n1] = n1w
x = rearrange(x, "(x w) -> x w", w=n1)
x = self.einsum_2d(x, n1w)
return x
@torch.no_grad()
def decode(self, x):
if len(x.shape) > 2: # 2D weights
n1 = x.shape[2]
n2 = x.shape[3]
n1w = self.b_dict[n1].to(x.device)
n2w = self.b_dict[n2].to(x.device)
self.b_dict[n1] = n1w
self.b_dict[n2] = n2w
x = self.einsum_2d_t(x, n1w, n2w)
x = rearrange(x, "y h x w -> (y h) (x w)")
else: # 1D weights
n1 = x.shape[1]
n1w = self.b_dict[n1].to(x.device)
self.b_dict[n1] = n1w
x = self.einsum_2d_t(x, n1w)
x = rearrange(x, "x w -> (x w)")
return x
class CompressDCT:
@torch.no_grad()
def __init__(self):
pass
def _clamp_topk(self, x, topk):
if topk > x.shape[-1]:
topk = x.shape[-1]
if topk < 1:
topk = 1
return topk
@torch.no_grad()
def compress(self, x, topk):
xshape = x.shape
if len(x.shape) > 2: # 2D weights
x = rearrange(x, "y x h w -> y x (h w)")
# Limit topk to max size
totalk = x.shape[-1]
topk = self._clamp_topk(x, topk)
idx = torch.topk(x.abs(), k=topk, dim=-1, largest=True, sorted=False).indices
val = torch.gather(x, dim=-1, index=idx)
return idx, val, xshape, totalk
@torch.no_grad()
def decompress(self, p, idx, val, xshape, totalk):
x = torch.zeros(xshape, device=p.device, dtype=p.dtype)
if len(xshape) > 2: # 2D weights
x = rearrange(x, "y x h w -> y x (h w)")
# TODO: Careful, this is nondeterministic across different CUDA devices! might cause errors to accumulate between nodes!
x.scatter_reduce_(dim=-1, index=idx, src=val, reduce="mean", include_self=False).reshape(xshape)
if len(x.shape) > 2: # 2D weights
x = rearrange(x, "y x (h w) -> y x h w", h=xshape[2])
return x
@torch.no_grad()
def batch_decompress(self, p, idx, val, xshape, totalk):
idx = torch.concatenate(idx, dim=-1).to(device=p.device)
val = torch.concatenate(val, dim=-1).to(device=p.device)
return self.decompress(p, idx, val, xshape, totalk)
# Code modified and sourced from https://github.com/zh217/torch-dct
def _dct_fft_impl(v):
return torch.view_as_real(torch.fft.fft(v, dim=1))
def _idct_irfft_impl(V):
return torch.fft.irfft(torch.view_as_complex(V), n=V.shape[1], dim=1)
def _dct(x, norm=None):
"""
Discrete Cosine Transform, Type II (a.k.a. the DCT)
For the meaning of the parameter `norm`, see:
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
:param x: the input signal
:param norm: the normalization, None or 'ortho'
:return: the DCT-II of the signal over the last dimension
"""
x_shape = x.shape
N = x_shape[-1]
x = x.contiguous().view(-1, N)
v = torch.cat([x[:, ::2], x[:, 1::2].flip([1])], dim=1)
Vc = _dct_fft_impl(v)
k = -torch.arange(N, dtype=x.dtype, device=x.device)[None, :] * math.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
V = Vc[:, :, 0] * W_r - Vc[:, :, 1] * W_i
if norm == "ortho":
V[:, 0] /= math.sqrt(N) * 2
V[:, 1:] /= math.sqrt(N / 2) * 2
V = 2 * V.view(*x_shape)
return V
def _idct(X, norm=None):
"""
The inverse to DCT-II, which is a scaled Discrete Cosine Transform, Type III
Our definition of idct is that idct(dct(x)) == x
For the meaning of the parameter `norm`, see:
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.fftpack.dct.html
:param X: the input signal
:param norm: the normalization, None or 'ortho'
:return: the inverse DCT-II of the signal over the last dimension
"""
x_shape = X.shape
N = x_shape[-1]
X_v = X.contiguous().view(-1, x_shape[-1]) / 2
if norm == "ortho":
X_v[:, 0] *= math.sqrt(N) * 2
X_v[:, 1:] *= math.sqrt(N / 2) * 2
k = torch.arange(x_shape[-1], dtype=X.dtype, device=X.device)[None, :] * math.pi / (2 * N)
W_r = torch.cos(k)
W_i = torch.sin(k)
V_t_r = X_v
V_t_i = torch.cat([X_v[:, :1] * 0, -X_v.flip([1])[:, :-1]], dim=1)
V_r = V_t_r * W_r - V_t_i * W_i
V_i = V_t_r * W_i + V_t_i * W_r
V = torch.cat([V_r.unsqueeze(2), V_i.unsqueeze(2)], dim=2)
v = _idct_irfft_impl(V)
x = v.new_zeros(v.shape)
x[:, ::2] += v[:, : N - (N // 2)]
x[:, 1::2] += v.flip([1])[:, : N // 2]
return x.view(*x_shape)
def _get_prime_divisors(n):
divisors = []
while n % 2 == 0:
divisors.append(2)
n //= 2
while n % 3 == 0:
divisors.append(3)
n //= 3
i = 5
while i * i <= n:
for k in (i, i + 2):
while n % k == 0:
divisors.append(k)
n //= k
i += 6
if n > 1:
divisors.append(n)
return divisors
def _get_divisors(n):
divisors = []
if n == 1:
divisors.append(1)
elif n > 1:
prime_factors = _get_prime_divisors(n)
divisors = [1]
last_prime = 0
factor = 0
slice_len = 0
# Find all the products that are divisors of n
for prime in prime_factors:
if last_prime != prime:
slice_len = len(divisors)
factor = prime
else:
factor *= prime
for i in range(slice_len):
divisors.append(divisors[i] * factor)
last_prime = prime
divisors.sort()
return divisors
def _get_smaller_split(n, close_to):
all_divisors = _get_divisors(n)
for ix, val in enumerate(all_divisors):
if val == close_to:
return val
if val > close_to:
if ix == 0:
return val
return all_divisors[ix - 1]
return n