Skip to content

Latest commit

 

History

History
2376 lines (1438 loc) · 62 KB

CHANGELOG.md

File metadata and controls

2376 lines (1438 loc) · 62 KB

Changelog

v2.0.0 (2020-08-04)

Breaking Changes

  • merge v2 changes into master

v1.72.0 (2020-07-29)

Features

  • Neo: Add Granular Target Description support for compilation

Documentation Changes

  • Add xgboost doc on bring your own model
  • fix typos on processing docs

v1.71.1 (2020-07-27)

Bug Fixes and Other Changes

  • remove redundant information from the user_agent string.

Testing and Release Infrastructure

  • use unique model name in TFS integ tests
  • use pytest-cov instead of coverage

v1.71.0 (2020-07-23)

Features

  • Add mpi support for mxnet estimator api

Bug Fixes and Other Changes

  • use 'sagemaker' logger instead of root logger
  • account for "py36" and "py37" in image tag parsing

v1.70.2 (2020-07-22)

Bug Fixes and Other Changes

  • convert network_config in processing_config to dict

Documentation Changes

  • Add ECR URI Estimator example

v1.70.1 (2020-07-21)

Bug Fixes and Other Changes

  • Nullable fields in processing_config

v1.70.0 (2020-07-20)

Features

  • Add model monitor support for us-gov-west-1
  • support TFS 2.2

Bug Fixes and Other Changes

  • reshape Artifacts into data frame in ExperimentsAnalytics

Documentation Changes

  • fix MXNet version info for requirements.txt support

v1.69.0 (2020-07-09)

Features

  • Add ModelClientConfig Fields for Batch Transform

Documentation Changes

  • add KFP Processing component

v2.0.0.rc1 (2020-07-08)

Breaking Changes

  • Move StreamDeserializer to sagemaker.deserializers
  • Move StringDeserializer to sagemaker.deserializers
  • rename record_deserializer to RecordDeserializer
  • remove "train_" where redundant in parameter/variable names
  • Add BytesDeserializer
  • rename image to image_uri
  • rename image_name to image_uri
  • create new inference resources during model.deploy() and model.transformer()
  • rename session parameter to sagemaker_session in S3 utility classes
  • rename distributions to distribution in TF/MXNet estimators
  • deprecate update_endpoint arg in deploy()
  • create new inference resources during estimator.deploy() or estimator.transformer()
  • deprecate delete_endpoint() for estimators and HyperparameterTuner
  • refactor Predictor attribute endpoint to endpoint_name
  • make instance_type optional for Airflow model configs
  • refactor name of RealTimePredictor to Predictor
  • remove check for Python 2 string in sagemaker.predictor._is_sequence_like()
  • deprecate sagemaker.utils.to_str()
  • drop Python 2 support

Features

  • add BaseSerializer and BaseDeserializer
  • add Predictor.update_endpoint()

Bug Fixes and Other Changes

  • handle "train_*" renames in v2 migration tool
  • handle image_uri rename for Session methods in v2 migration tool
  • Update BytesDeserializer accept header
  • handle image_uri rename for estimators and models in v2 migration tool
  • handle image_uri rename in Airflow model config functions in v2 migration tool
  • update migration tool for S3 utility functions
  • set _current_job_name and base_tuning_job_name in HyperparameterTuner.attach()
  • infer base name from job name in estimator.attach()
  • ensure generated names are < 63 characters when deploying compiled models
  • add TF migration documentation to error message

Documentation Changes

  • update documentation with v2.0.0.rc1 changes
  • remove 'train_*' prefix from estimator parameters
  • update documentation for image_name/image --> image_uri

Testing and Release Infrastructure

  • refactor matching logic in v2 migration tool
  • add cli modifier for RealTimePredictor and derived classes
  • change coverage settings to reduce intermittent errors
  • clean up pickle.load logic in integ tests
  • use fixture for Python version in framework integ tests
  • remove assumption of Python 2 unit test runs

v1.68.0 (2020-07-07)

Features

  • add spot instance support for AlgorithmEstimator

Documentation Changes

  • add xgboost documentation for inference

v1.67.1.post0 (2020-07-01)

Documentation Changes

  • add Step Functions SDK info

v1.67.1 (2020-06-30)

Bug Fixes and Other Changes

  • add deprecation warnings for estimator.delete_endpoint() and tuner.delete_endpoint()

v1.67.0 (2020-06-29)

Features

  • Apache Airflow integration for SageMaker Processing Jobs

Bug Fixes and Other Changes

  • fix punctuation in warning message

Testing and Release Infrastructure

  • address warnings about pytest custom marks, error message checking, and yaml loading
  • mark long-running cron tests
  • fix tox test dependencies and bump coverage threshold to 86%

v1.66.0 (2020-06-25)

Features

  • add 3.8 as supported python version

Testing and Release Infrastructure

  • upgrade airflow to latest stable version
  • update feature request issue template

v1.65.1.post1 (2020-06-24)

Testing and Release Infrastructure

  • add py38 to buildspecs

v1.65.1.post0 (2020-06-22)

Documentation Changes

  • document that Local Mode + local code doesn't support dependencies arg

Testing and Release Infrastructure

  • upgrade Sphinx to 3.1.1

v1.65.1 (2020-06-18)

Bug Fixes and Other Changes

  • remove include_package_data=True from setup.py

Documentation Changes

  • add some clarification to Processing docs

Testing and Release Infrastructure

  • specify what kinds of clients in PR template

v1.65.0 (2020-06-17)

Features

  • support for describing hyperparameter tuning job

Bug Fixes and Other Changes

  • update distributed GPU utilization warning message
  • set logs to False if wait is False in AutoML
  • workflow passing spot training param to training job

v2.0.0.rc0 (2020-06-17)

Breaking Changes

  • remove estimator parameters for TF legacy mode
  • remove legacy TensorFlowModel and TensorFlowPredictor classes
  • force image URI to be passed for legacy TF images
  • rename sagemaker.tensorflow.serving to sagemaker.tensorflow.model
  • require framework_version and py_version for framework estimator and model classes
  • change Model parameter order to make model_data optional

Bug Fixes and Other Changes

  • add v2 migration tool

Documentation Changes

  • update TF documentation to reflect breaking changes and how to upgrade
  • start v2 usage and migration documentation

Testing and Release Infrastructure

  • remove scipy from dependencies
  • remove TF from optional dependencies

v1.64.1 (2020-06-16)

Bug Fixes and Other Changes

  • include py38 tox env and some dependency upgrades

v1.64.0 (2020-06-15)

Features

  • add support for SKLearn 0.23

v1.63.0 (2020-06-12)

Features

  • Allow selecting inference response content for automl generated models
  • Support for multi variant endpoint invocation with target variant param

Documentation Changes

  • improve docstring and remove unavailable links

v1.62.0 (2020-06-11)

Features

  • Support for multi variant endpoint invocation with target variant param

Bug Fixes and Other Changes

  • Revert "feature: Support for multi variant endpoint invocation with target variant param (#1571)"
  • make instance_type optional for prepare_container_def
  • docs: workflows navigation

Documentation Changes

  • fix typo in MXNet documentation

v1.61.0 (2020-06-09)

Features

  • Use boto3 DEFAULT_SESSION when no boto3 session specified.

Bug Fixes and Other Changes

  • remove v2 Session warnings
  • upgrade smdebug-rulesconfig to 0.1.4
  • explicitly handle arguments in create_model for sklearn and xgboost

v1.60.2 (2020-05-29)

Bug Fixes and Other Changes

  • [doc] Added Amazon Components for Kubeflow Pipelines

v1.60.1.post0 (2020-05-28)

Documentation Changes

  • clarify that entry_point must be in the root of source_dir (if applicable)

v1.60.1 (2020-05-27)

Bug Fixes and Other Changes

  • refactor the navigation

Documentation Changes

  • fix undoc directive; removes extra tabs

v1.60.0.post0 (2020-05-26)

Documentation Changes

  • remove some duplicated documentation from main README
  • fix TF requirements.txt documentation

v1.60.0 (2020-05-25)

Features

  • support TensorFlow training 2.2

Bug Fixes and Other Changes

  • blacklist unknown xgboost image versions
  • use format strings instead of os.path.join for S3 URI in S3Downloader

Documentation Changes

  • consolidate framework version and image information

v1.59.0 (2020-05-21)

Features

  • MXNet elastic inference support

Bug Fixes and Other Changes

  • add Batch Transform data processing options to Airflow config
  • add v2 warning messages
  • don't try to use local output path for KMS key in Local Mode

Documentation Changes

  • add instructions for how to enable 'local code' for Local Mode

v1.58.4 (2020-05-20)

Bug Fixes and Other Changes

  • update AutoML default max_candidate value to use the service default
  • add describe_transform_job in session class

Documentation Changes

  • clarify support for requirements.txt in Tensorflow docs

Testing and Release Infrastructure

  • wait for DisassociateTrialComponent to take effect in experiment integ test cleanup

v1.58.3 (2020-05-19)

Bug Fixes and Other Changes

  • update DatasetFormat key name for sagemakerCaptureJson

Documentation Changes

  • update Processing job max_runtime_in_seconds docstring

v1.58.2.post0 (2020-05-18)

Documentation Changes

  • specify S3 source_dir needs to point to a tar file
  • update PyTorch BYOM topic

v1.58.2 (2020-05-13)

Bug Fixes and Other Changes

  • address flake8 error

v1.58.1 (2020-05-11)

Bug Fixes and Other Changes

  • upgrade boto3 to 1.13.6

v1.58.0 (2020-05-08)

Features

  • support inter container traffic encryption for processing jobs

Documentation Changes

  • add note that v2.0.0 plans have been posted

v1.57.0 (2020-05-07)

Features

  • add tensorflow training 1.15.2 py37 support
  • PyTorch 1.5.0 support

v1.56.3 (2020-05-06)

Bug Fixes and Other Changes

  • update xgboost latest image version

v1.56.2 (2020-05-05)

Bug Fixes and Other Changes

  • training_config returns MetricDefinitions
  • preserve inference script in model repack.

Testing and Release Infrastructure

  • support Python 3.7

v1.56.1.post1 (2020-04-29)

Documentation Changes

  • document model.tar.gz structure for MXNet and PyTorch
  • add documentation for EstimatorBase parameters missing from docstring

v1.56.1.post0 (2020-04-28)

Testing and Release Infrastructure

  • add doc8 check for documentation files

v1.56.1 (2020-04-27)

Bug Fixes and Other Changes

  • add super() call in Local Mode DataSource subclasses
  • fix xgboost image incorrect latest version warning
  • allow output_path without trailing slash in Local Mode training jobs
  • allow S3 folder input to contain a trailing slash in Local Mode

Documentation Changes

  • Add namespace-based setup for SageMaker Operators for Kubernetes
  • Add note about file URLs for Estimator methods in Local Mode

v1.56.0 (2020-04-24)

Features

  • add EIA support for TFS 1.15.0 and 2.0.0

Bug Fixes and Other Changes

  • use format strings intead of os.path.join for Unix paths for Processing Jobs

v1.55.4 (2020-04-17)

Bug Fixes and Other Changes

  • use valid encryption key arg for S3 downloads
  • update sagemaker pytorch containers to external link
  • allow specifying model name when creating a Transformer from an Estimator
  • allow specifying model name in create_model() for TensorFlow, SKLearn, and XGBoost
  • allow specifying model name in create_model() for Chainer, MXNet, PyTorch, and RL

Documentation Changes

  • fix wget endpoints
  • add Adobe Analytics; upgrade Sphinx and docs environment
  • Explain why default model_fn loads PyTorch-EI models to CPU by default
  • Set theme in conf.py
  • correct transform()'s wait default value to "False"

Testing and Release Infrastructure

  • move unit tests for updating an endpoint to test_deploy.py
  • move Neo unit tests to a new file and directly use the Model class
  • move Model.deploy unit tests to separate file
  • add Model unit tests for delete_model and enable_network_isolation
  • skip integ tests in PR build if only unit tests are modified
  • add Model unit tests for prepare_container_def and _create_sagemaker_model
  • use Model class for model deployment unit tests
  • split model unit tests by Model, FrameworkModel, and ModelPackage
  • add Model unit tests for all transformer() params
  • add TF batch transform integ test with KMS and network isolation
  • use pytest fixtures in batch transform integ tests to train and upload to S3 only once
  • improve unit tests for creating Transformers and transform jobs
  • add PyTorch + custom model bucket batch transform integ test

v1.55.3 (2020-04-08)

Bug Fixes and Other Changes

  • remove .strip() from batch transform
  • allow model with network isolation when creating a Transformer from an Estimator
  • add enable_network_isolation to EstimatorBase

v1.55.2 (2020-04-07)

Bug Fixes and Other Changes

  • use .format instead of os.path.join for Processing S3 paths.

Testing and Release Infrastructure

  • use m5.xlarge instances for "ap-northeast-1" region integ tests.

v1.55.1 (2020-04-06)

Bug Fixes and Other Changes

  • correct local mode behavior for CN regions

v1.55.0.post0 (2020-04-06)

Documentation Changes

  • fix documentation to provide working example.
  • add documentation for XGBoost
  • Correct comment in SKLearn Estimator about default Python version
  • document inferentia supported version
  • Merge Amazon Sagemaker Operators for Kubernetes and Kubernetes Jobs pages

Testing and Release Infrastructure

  • turn on warnings as errors for docs builds

v1.55.0 (2020-03-31)

Features

  • support cn-north-1 and cn-northwest-1

v1.54.0 (2020-03-31)

Features

  • inferentia support

v1.53.0 (2020-03-30)

Features

  • Allow setting S3 endpoint URL for Local Session

Bug Fixes and Other Changes

  • Pass kwargs from create_model to Model constructors
  • Warn if parameter server is used with multi-GPU instance

v1.52.1 (2020-03-26)

Bug Fixes and Other Changes

  • Fix local _SageMakerContainer detached mode (aws#1374)

v1.52.0.post0 (2020-03-25)

Documentation Changes

  • Add docs for debugger job support in operator

v1.52.0 (2020-03-24)

Features

  • add us-gov-west-1 to neo supported regions

v1.51.4 (2020-03-23)

Bug Fixes and Other Changes

  • Check that session is a LocalSession when using local mode
  • add tflite to Neo-supported frameworks
  • ignore tags with 'aws:' prefix when creating an EndpointConfig based on an existing one
  • allow custom image when calling deploy or create_model with various frameworks

Documentation Changes

  • fix description of default model_dir for TF
  • add more details about PyTorch eia

v1.51.3 (2020-03-12)

Bug Fixes and Other Changes

  • make repack_model only removes py file when new entry_point provided

v1.51.2 (2020-03-11)

Bug Fixes and Other Changes

  • handle empty inputs/outputs in ProcessingJob.from_processing_name()
  • use DLC images for GovCloud

Testing and Release Infrastructure

  • generate test job name at test start instead of module start

v1.51.1 (2020-03-10)

Bug Fixes and Other Changes

  • skip pytorch ei test in unsupported regions

Documentation Changes

  • correct MultiString/MULTI_STRING docstring

v1.51.0 (2020-03-09)

Features

  • pytorch 1.3.1 eia support

Documentation Changes

  • Update Kubernetes Operator default tag
  • improve docstring for tuner.best_estimator()

v1.50.18.post0 (2020-03-05)

Documentation Changes

  • correct Estimator code_location default S3 path

v1.50.18 (2020-03-04)

Bug Fixes and Other Changes

  • change default compile model max run to 15 mins

v1.50.17.post0 (2020-03-03)

Testing and Release Infrastructure

  • fix PR builds to run on changes to their own buildspecs
  • programmatically determine partition based on region

v1.50.17 (2020-02-27)

Bug Fixes and Other Changes

  • upgrade framework versions

v1.50.16 (2020-02-26)

Bug Fixes and Other Changes

  • use sagemaker_session when initializing Constraints and Statistics
  • add sagemaker_session parameter to DataCaptureConfig
  • make AutoML.deploy use self.sagemaker_session by default

Testing and Release Infrastructure

  • unset region during integ tests
  • use sagemaker_session fixture in all Airflow tests
  • remove remaining TF legacy mode integ tests

v1.50.15 (2020-02-25)

Bug Fixes and Other Changes

  • enable Neo integ tests

v1.50.14.post0 (2020-02-24)

Testing and Release Infrastructure

  • remove TF framework mode notebooks from PR build
  • don't create docker network for all integ tests

v1.50.14 (2020-02-20)

Bug Fixes and Other Changes

  • don't use os.path.join for S3 path when repacking TFS model
  • dynamically determine AWS domain based on region

v1.50.13 (2020-02-19)

Bug Fixes and Other Changes

  • allow download_folder to download file even if bucket is more restricted

Testing and Release Infrastructure

  • configure pylint to recognize boto3 and botocore as third-party imports
  • add multiple notebooks to notebook PR build

v1.50.12 (2020-02-17)

Bug Fixes and Other Changes

  • enable network isolation for amazon estimators

Documentation Changes

  • clarify channel environment variables in PyTorch documentation

v1.50.11 (2020-02-13)

Bug Fixes and Other Changes

  • fix HyperparameterTuner.attach for Marketplace algorithms
  • move requests library from required packages to test dependencies
  • create Session or LocalSession if not specified in Model

Documentation Changes

  • remove hardcoded list of target devices in compile()
  • Fix typo with SM_MODEL_DIR, missing quotes

v1.50.10.post0 (2020-02-12)

Documentation Changes

  • add documentation guidelines to CONTRIBUTING.md
  • Removed section numbering

v1.50.10 (2020-02-11)

Bug Fixes and Other Changes

  • remove NEO_ALLOWED_TARGET_INSTANCE_FAMILY

v1.50.9.post0 (2020-02-06)

Documentation Changes

  • remove labels from issue templates

v1.50.9 (2020-02-04)

Bug Fixes and Other Changes

  • account for EI and version-based ECR repo naming in serving_image_uri()

Documentation Changes

  • correct broken AutoML API documentation link
  • fix MXNet version lists

v1.50.8 (2020-01-30)

Bug Fixes and Other Changes

  • disable Debugger defaults in unsupported regions
  • modify session and kms_utils to check for S3 bucket before creation
  • update docker-compose and PyYAML dependencies
  • enable smdebug for Horovod (MPI) training setup
  • create lib dir for dependencies safely (only if it doesn't exist yet).
  • create the correct session for MultiDataModel

Documentation Changes

  • update links to the local mode notebooks examples.
  • Remove outdated badges from README
  • update links to TF notebook examples to link to script mode examples.
  • clean up headings, verb tenses, names, etc. in MXNet overview
  • Update SageMaker operator Helm chart installation guide

Testing and Release Infrastructure

  • choose faster notebook for notebook PR build
  • properly fail PR build if has-matching-changes fails
  • properly fail PR build if has-matching-changes fails

v1.50.7 (2020-01-20)

Bug fixes and other changes

  • do not use script for TFS when entry_point is not provided
  • remove usage of pkg_resources
  • update py2 warning message since python 2 is deprecated
  • cleanup experiments, trials, and trial components in integ tests

v1.50.6.post0 (2020-01-20)

Documentation changes

  • add additional information to Transformer class transform function doc string

v1.50.6 (2020-01-18)

Bug fixes and other changes

  • Append serving to model framework name for PyTorch, MXNet, and TensorFlow

v1.50.5 (2020-01-17)

Bug fixes and other changes

  • Use serving_image_uri for Airflow

Documentation changes

  • revise Processing docstrings for formatting and class links
  • Add processing readthedocs

v1.50.4 (2020-01-16)

Bug fixes and other changes

  • Remove version number from default version comment
  • remove remaining instances of python-dateutil pin
  • upgrade boto3 and remove python-dateutil pin

Documentation changes

  • Add issue templates and configure issue template chooser
  • Update error type in delete_endpoint docstring
  • add version requirement for using "requirements.txt" when serving an MXNet model
  • update container dependency versions for MXNet and PyTorch
  • Update supported versions of PyTorch

v1.50.3 (2020-01-15)

Bug fixes and other changes

  • ignore private Automatic Model Tuning hyperparameter when attaching AlgorithmEstimator

Documentation changes

  • add Debugger API docs

v1.50.2 (2020-01-14)

Bug fixes and other changes

  • add tests to quick canary
  • honor 'wait' flag when updating endpoint
  • add default framework version warning message in Model classes
  • Adding role arn explanation for sagemaker role
  • allow predictor to be returned from AutoML.deploy()
  • add PR checklist item about unique_name_from_base()
  • use unique_name_from_base for multi-algo tuning test
  • update copyright year in license header

Documentation changes

  • add version requirement for using "requirement.txt" when serving a PyTorch model
  • add SageMaker Debugger overview
  • clarify requirements.txt usage for Chainer, MXNet, and Scikit-learn
  • change "associate" to "create" for OpenID connector
  • fix typo and improve clarity on installing packages via "requirements.txt"

v1.50.1 (2020-01-07)

Bug fixes and other changes

  • fix PyTorchModel deployment crash on Windows
  • make PyTorch empty framework_version warning include the latest PyTorch version

v1.50.0 (2020-01-06)

Features

  • allow disabling debugger_hook_config

Bug fixes and other changes

  • relax urllib3 and requests restrictions.
  • Add uri as return statement for upload_string_as_file_body
  • refactor logic in fw_utils and fill in docstrings
  • increase poll from 5 to 30 for DescribeEndpoint lambda.
  • fix test_auto_ml tests for regions without ml.c4.xlarge hosts.
  • fix test_processing for regions without m4.xlarge instances.
  • reduce test's describe frequency to eliminate throttling error.
  • Increase number of retries when describing an endpoint since tf-2.0 has larger images and takes longer to start.

Documentation changes

  • generalize Model Monitor documentation from SageMaker Studio tutorial

v1.49.0 (2019-12-23)

Features

  • Add support for TF-2.0.0.
  • create ProcessingJob from ARN and from name

Bug fixes and other changes

  • Make tf tests tf-1.15 and tf-2.0 compatible.

Documentation changes

  • add Model Monitor documentation
  • add link to Amazon algorithm estimator parent class to clarify **kwargs

v1.48.1 (2019-12-18)

Bug fixes and other changes

  • use name_from_base in auto_ml.py but unique_name_from_base in tests.
  • make test's custom bucket include region and account name.
  • add Keras to the list of Neo-supported frameworks

Documentation changes

  • add link to parent classes to clarify **kwargs
  • add link to framework-related parent classes to clarify **kwargs

v1.48.0 (2019-12-17)

Features

  • allow setting the default bucket in Session

Bug fixes and other changes

  • set integration test parallelization to 512
  • shorten base job name to avoid collision
  • multi model integration test to create ECR repo with unique names to allow independent parallel executions

v1.47.1 (2019-12-16)

Bug fixes and other changes

  • Revert "feature: allow setting the default bucket in Session (#1168)"

Documentation changes

  • add AutoML README
  • add missing classes to API docs

v1.47.0 (2019-12-13)

Features

  • allow setting the default bucket in Session

Bug fixes and other changes

  • allow processing users to run code in s3

v1.46.0 (2019-12-12)

Features

  • support Multi-Model endpoints

Bug fixes and other changes

  • update PR template with items about tests, regional endpoints, and API docs

v1.45.2 (2019-12-10)

Bug fixes and other changes

  • modify schedule cleanup to abide by latest validations
  • lower log level when getting execution role from a SageMaker Notebook
  • Fix "ValueError: too many values to unpack (expected 2)" is occurred in windows local mode
  • allow ModelMonitor and Processor to take IAM role names (in addition to ARNs)

Documentation changes

  • mention that the entry_point needs to be named inference.py for tfs

v1.45.1 (2019-12-06)

Bug fixes and other changes

  • create auto ml job for tests that based on existing job
  • fixing py2 support for latest TF version
  • fix tags in deploy call for generic estimators
  • make multi algo integration test assertion less specific

v1.45.0 (2019-12-04)

Features

  • add support for TF 1.15.0, PyTorch 1.3.1 and MXNet 1.6rc0.
  • add S3Downloader.list(s3_uri) functionality
  • introduce SageMaker AutoML
  • wrap up Processing feature
  • add a few minor features to Model Monitoring
  • add enable_sagemaker_metrics flag
  • Amazon SageMaker Model Monitoring
  • add utils.generate_tensorboard_url function
  • Add jobs list to Estimator

Bug fixes and other changes

  • remove unnecessary boto model files
  • update boto version to >=1.10.32
  • correct Debugger tests
  • fix bug in monitor.attach() for empty network_config
  • Import smdebug_rulesconfig from PyPI
  • bump the version to 1.45.0 (publishes 1.46.0) for re:Invent-2019
  • correct AutoML imports and expose current_job_name
  • correct Model Monitor eu-west-3 image name.
  • use DLC prod images
  • remove unused env variable for Model Monitoring
  • aws model update
  • rename get_debugger_artifacts to latest_job_debugger_artifacts
  • remove retain flag from update_endpoint
  • correct S3Downloader behavior
  • consume smdebug_ruleconfig .whl for ITs
  • disable DebuggerHook and Rules for TF distributions
  • incorporate smdebug_ruleconfigs pkg until availability in PyPI
  • remove pre/post scripts per latest validations
  • update rules_config .whl
  • remove py_version from SKLearnProcessor
  • AutoML improvements
  • stop overwriting custom rules volume and type
  • fix tests due to latest server-side validations
  • Minor processing changes
  • minor processing changes (instance_count + docs)
  • update api to latest
  • Eureka master
  • Add support for xgboost version 0.90-2
  • SageMaker Debugger revision
  • Add support for SageMaker Debugger [WIP]
  • Fix linear learner crash when num_class is string and predict type is multiclass_classifier
  • Additional Processing Jobs integration tests
  • Migrate to updated Processing Jobs API
  • Processing Jobs revision round 2
  • Processing Jobs revision
  • remove instance_pools parameter from tuner
  • Multi-Algorithm Hyperparameter Tuning Support
  • Import Processors in init files
  • Remove SparkML Processors and corresponding unit tests
  • Processing Jobs Python SDK support

v1.44.4 (2019-12-02)

Bug fixes and other changes

  • Documentation for Amazon Sagemaker Operators

v1.44.3 (2019-11-26)

Bug fixes and other changes

  • move sagemaker config loading to LocalSession since it is only used for local code support.

Documentation changes

  • fix docstring wording.

v1.44.2 (2019-11-25)

Bug fixes and other changes

  • add pyyaml dependencies to the required list.

Documentation changes

  • Correct info on code_location parameter

v1.44.1 (2019-11-21)

Bug fixes and other changes

  • Remove local mode dependencies from required.

v1.44.0 (2019-11-21)

Features

  • separating sagemaker dependencies into more use case specific installable components.

Bug fixes and other changes

  • remove docker-compose as a required dependency.

v1.43.5 (2019-11-18)

Bug fixes and other changes

  • remove red from possible colors when streaming logs

v1.43.4.post1 (2019-10-29)

Documentation changes

  • clarify that source_dir can be an S3 URI

v1.43.4.post0 (2019-10-28)

Documentation changes

  • clarify how to use parameter servers with distributed MXNet training

v1.43.4 (2019-10-24)

Bug fixes and other changes

  • use regional endpoint for STS in builds and tests

Documentation changes

  • update link to point to ReadTheDocs

v1.43.3 (2019-10-23)

Bug fixes and other changes

  • exclude regions for P2 tests

v1.43.2 (2019-10-21)

Bug fixes and other changes

  • add support for me-south-1 region

v1.43.1 (2019-10-17)

Bug fixes and other changes

  • validation args now use default framework_version for TensorFlow

v1.43.0 (2019-10-16)

Features

  • Add support for PyTorch 1.2.0

v1.42.9 (2019-10-14)

Bug fixes and other changes

  • use default bucket for checkpoint_s3_uri integ test
  • use sts regional endpoint when creating default bucket
  • use us-west-2 endpoint for sts in buildspec
  • take checkpoint_s3_uri and checkpoint_local_path in Framework class

v1.42.8 (2019-10-10)

Bug fixes and other changes

  • add kwargs to create_model for 1p to work with kms

v1.42.7 (2019-10-09)

Bug fixes and other changes

  • paginating describe log streams

v1.42.6.post0 (2019-10-07)

Documentation changes

  • model local mode

v1.42.6 (2019-10-03)

Bug fixes and other changes

  • update tfs documentation for requirements.txt
  • support content_type in FileSystemInput
  • allowing account overrides in special regions

v1.42.5 (2019-10-02)

Bug fixes and other changes

  • update using_mxnet.rst

v1.42.4 (2019-10-01)

Bug fixes and other changes

  • Revert "fix issue-987 error by adding instance_type in endpoint_name (#1058)"
  • fix issue-987 error by adding instance_type in endpoint_name

v1.42.3 (2019-09-26)

Bug fixes and other changes

  • preserve EnableNetworkIsolation setting in attach
  • enable kms support for repack_model
  • support binary by NoneSplitter.
  • stop CI unit test code checks from running in parallel

v1.42.2 (2019-09-25)

Bug fixes and other changes

  • re-enable airflow_config tests

v1.42.1 (2019-09-24)

Bug fixes and other changes

  • lazy import of tensorflow module
  • skip airflow_config tests as they're blocking the release build
  • skip lda tests in regions that does not support it.
  • add airflow_config tests to canaries
  • use correct STS endpoint for us-iso-east-1

v1.42.0 (2019-09-20)

Features

  • add estimator preparation to airflow configuration

Bug fixes and other changes

  • correct airflow workflow for BYO estimators.

v1.41.0 (2019-09-20)

Features

  • enable sklearn for network isolation mode

v1.40.2 (2019-09-19)

Bug fixes and other changes

  • use new ECR images in us-iso-east-1 for TF and MXNet

v1.40.1 (2019-09-18)

Bug fixes and other changes

  • expose kms_key parameter for deploying from training and hyperparameter tuning jobs

Documentation changes

  • Update sklearn default predict_fn

v1.40.0 (2019-09-17)

Features

  • add support to TF 1.14 serving with elastic accelerator.

v1.39.4 (2019-09-17)

Bug fixes and other changes

  • pass enable_network_isolation when creating TF and SKLearn models

v1.39.3 (2019-09-16)

Bug fixes and other changes

  • expose vpc_config_override in transformer() methods
  • use Estimator.create_model in Estimator.transformer

v1.39.2 (2019-09-11)

Bug fixes and other changes

  • pass enable_network_isolation in Estimator.create_model
  • use p2 instead of p3 for the Horovod test

v1.39.1 (2019-09-10)

Bug fixes and other changes

  • copy dependencies into new folder when repacking model
  • make get_caller_identity_arn get role from DescribeNotebookInstance
  • add https to regional STS endpoint
  • clean up git support integ tests

v1.39.0 (2019-09-09)

Features

  • Estimator.fit like logs for transformer
  • handler for stopping transform job

Bug fixes and other changes

  • remove hardcoded creds from integ test
  • remove hardcoded creds from integ test
  • Fix get_image_uri warning log for default xgboost version.
  • add enable_network_isolation to generic Estimator class
  • use regional endpoint when creating AWS STS client
  • update Sagemaker Neo regions
  • use cpu_instance_type fixture for stop_transform_job test
  • hyperparameter tuning with spot instances and checkpoints
  • skip efs and fsx integ tests in all regions

Documentation changes

  • clarify some Local Mode limitations

v1.38.6 (2019-09-04)

Bug fixes and other changes

  • update: disable efs fsx integ tests in non-pdx regions
  • fix canary test failure issues
  • use us-east-1 for PR test runs

Documentation changes

  • updated description for "accept" parameter in batch transform

v1.38.5 (2019-09-02)

Bug fixes and other changes

  • clean up resources created by file system set up when setup fails

v1.38.4 (2019-08-29)

Bug fixes and other changes

  • skip EFS tests until they are confirmed fixed.

Documentation changes

  • add note to CONTRIBUTING to clarify automated formatting
  • add checkpoint section to using_mxnet topic

v1.38.3 (2019-08-28)

Bug fixes and other changes

  • change AMI ids in tests to be dynamic based on regions

v1.38.2 (2019-08-27)

Bug fixes and other changes

  • skip efs tests in non us-west-2 regions
  • refactor tests to use common retry method

v1.38.1 (2019-08-26)

Bug fixes and other changes

  • update py2 warning message
  • add logic to use asimov image for TF 1.14 py2

Documentation changes

  • changed EFS directory path instructions in documentation and Docstrings

v1.38.0 (2019-08-23)

Features

  • support training inputs from EFS and FSx

v1.37.2 (2019-08-20)

Bug fixes and other changes

  • Add support for Managed Spot Training and Checkpoint support
  • Integration Tests now dynamically checks AZs

v1.37.1 (2019-08-19)

Bug fixes and other changes

  • eliminate dependency on mnist dataset website

Documentation changes

  • refactor using_sklearn and fix minor errors in using_pytorch and using_chainer

v1.37.0 (2019-08-15)

Features

  • add XGBoost Estimator as new framework

Bug fixes and other changes

  • fix tests for new regions
  • add update_endpoint for PipelineModel

Documentation changes

  • refactor the using Chainer topic

v1.36.4 (2019-08-13)

Bug fixes and other changes

  • region build from staging pr

Documentation changes

  • Refactor Using PyTorch topic for consistency

v1.36.3 (2019-08-13)

Bug fixes and other changes

  • fix integration test failures masked by timeout bug
  • prevent multiple values error in sklearn.transformer()
  • model.transformer() passes tags to create_model()

v1.36.2 (2019-08-12)

Bug fixes and other changes

  • rework CONTRIBUTING.md to include a development workflow

v1.36.1 (2019-08-08)

Bug fixes and other changes

  • prevent integration test's timeout functions from hiding failures

Documentation changes

  • correct typo in using_sklearn.rst

v1.36.0 (2019-08-07)

Features

  • support for TensorFlow 1.14

Bug fixes and other changes

  • ignore FI18 flake8 rule
  • allow Airflow enabled estimators to use absolute path entry_point

v1.35.1 (2019-08-01)

Bug fixes and other changes

  • update sklearn document to include 3p dependency installation

Documentation changes

  • refactor and edit using_mxnet topic

v1.35.0 (2019-07-31)

Features

  • allow serving image to be specified when calling MXNet.deploy

v1.34.3 (2019-07-30)

Bug fixes and other changes

  • waiting for training tags to propagate in the test

v1.34.2 (2019-07-29)

Bug fixes and other changes

  • removing unnecessary tests cases
  • Replaced generic ValueError with custom subclass when reporting unexpected resource status

Documentation changes

  • correct wording for Cloud9 environment setup instructions

v1.34.1 (2019-07-23)

Bug fixes and other changes

  • enable line-too-long Pylint check
  • improving Chainer integ tests
  • update TensorFlow script mode dependency list
  • improve documentation of some functions
  • update PyTorch version
  • allow serving script to be defined for deploy() and transformer() with frameworks
  • format and add missing docstring placeholders
  • add MXNet 1.4.1 support

Documentation changes

  • add instructions for setting up Cloud9 environment.
  • update using_tensorflow topic

v1.34.0 (2019-07-18)

Features

  • Git integration for CodeCommit
  • deal with credentials for Git support for GitHub

Bug fixes and other changes

  • modify TODO on disabled Pylint check
  • enable consider-using-ternary Pylint check
  • enable chained-comparison Pylint check
  • enable too-many-public-methods Pylint check
  • enable consider-using-in Pylint check
  • set num_processes_per_host only if provided by user
  • fix attach for 1P algorithm estimators
  • enable ungrouped-imports Pylint check
  • enable wrong-import-order Pylint check
  • enable attribute-defined-outside-init Pylint check
  • enable consider-merging-isinstance Pylint check
  • enable inconsistent-return-statements Pylint check
  • enable simplifiable-if-expression pylint checks
  • fix list serialization for 1P algos
  • enable no-else-return and no-else-raise pylint checks
  • enable unidiomatic-typecheck pylint check

v1.33.0 (2019-07-10)

Features

  • git support for hosting models
  • allow custom model name during deploy

Bug fixes and other changes

  • remove TODO comment on import-error Pylint check
  • enable wrong-import-position pylint check
  • Revert "change: enable wrong-import-position pylint check (#907)"
  • enable signature-differs pylint check
  • enable wrong-import-position pylint check
  • enable logging-not-lazy pylint check
  • reset default output path in Transformer.transform
  • Add ap-northeast-1 to Neo algorithms region map

v1.32.2 (2019-07-08)

Bug fixes and other changes

  • enable logging-format-interpolation pylint check
  • remove superfluous parens per Pylint rule

Documentation changes

  • add pypi, rtd, black badges to readme

v1.32.1 (2019-07-04)

Bug fixes and other changes

  • correct code per len-as-condition Pylint check
  • tighten pylint config and expand C and R exceptions
  • Update displaytime.sh
  • fix notebook tests
  • separate unit, local mode, and notebook tests in different buildspecs

Documentation changes

  • refactor the overview topic in the sphinx project

v1.32.0 (2019-07-02)

Features

  • support Endpoint_type for TF transform

Bug fixes and other changes

  • fix git test in test_estimator.py
  • Add ap-northeast-1 to Neo algorithms region map

v1.31.1 (2019-07-01)

Bug fixes and other changes

  • print build execution time
  • remove unnecessary failure case tests
  • build spec improvements.

v1.31.0 (2019-06-27)

Features

  • use deep learning images

Bug fixes and other changes

  • Update buildspec.yml
  • allow only one integration test run per time
  • remove unnecessary P3 tests from TFS integration tests
  • add pytest.mark.local_mode annotation to broken tests

v1.30.0 (2019-06-25)

Features

  • add TensorFlow 1.13 support
  • add git_config and git_clone, validate method

Bug fixes and other changes

  • add pytest.mark.local_mode annotation to broken tests

v1.29.0 (2019-06-24)

Features

  • network isolation mode in training

Bug fixes and other changes

  • Integrate black into development process
  • moving not canary TFS tests to local mode

v1.28.3 (2019-06-20)

Bug fixes and other changes

  • update Sagemaker Neo regions and instance families

Documentation changes

  • fix punctuation in MXNet version list
  • clean up MXNet and TF documentation

v1.28.2 (2019-06-19)

Bug fixes and other changes

  • prevent race condition in vpc tests

v1.28.1 (2019-06-17)

Bug fixes and other changes

  • Update setup.py

v1.28.0 (2019-06-17)

Features

  • Add DataProcessing Fields for Batch Transform

v1.27.0 (2019-06-11)

Features

  • add wait argument to estimator deploy

Bug fixes and other changes

  • fix logger creation in Chainer integ test script

v1.26.0 (2019-06-10)

Features

  • emit estimator transformer tags to model
  • Add extra_args to enable encrypted objects upload

Bug fixes and other changes

  • downgrade c5 in integ tests and test all TF Script Mode images

Documentation changes

  • include FrameworkModel and ModelPackage in API docs

v1.25.1 (2019-06-06)

Bug fixes and other changes

  • use unique job name in hyperparameter tuning test

v1.25.0 (2019-06-03)

Features

  • repack_model support dependencies and code location

Bug fixes and other changes

  • skip p2 tests in ap-south-east
  • add better default transform job name handling within Transformer

Documentation changes

  • TFS support for pre/processing functions

v1.24.0 (2019-05-29)

Features

  • add region check for Neo service

v1.23.0 (2019-05-27)

Features

  • support MXNet 1.4 with MMS

Documentation changes

  • update using_sklearn.rst parameter name

v1.22.0 (2019-05-23)

Features

  • add encryption option to "record_set"

Bug fixes and other changes

  • honor source_dir from S3

v1.21.2 (2019-05-22)

Bug fixes and other changes

  • set _current_job_name in attach()
  • emit training jobs tags to estimator

v1.21.1 (2019-05-21)

Bug fixes and other changes

  • repack model function works without source directory

v1.21.0 (2019-05-20)

Features

  • Support for TFS preprocessing

v1.20.3 (2019-05-15)

Bug fixes and other changes

  • run tests if buildspec.yml has been modified
  • skip local file check for TF requirements file when source_dir is an S3 URI

Documentation changes

  • fix docs in regards to transform_fn for mxnet

v1.20.2 (2019-05-13)

Bug fixes and other changes

  • pin pytest version to 4.4.1 to avoid pluggy version conflict

v1.20.1 (2019-05-09)

Bug fixes and other changes

  • update TrainingInputMode with s3_input InputMode

v1.20.0 (2019-05-08)

Features

  • add RL Ray 0.6.5 support

Bug fixes and other changes

  • prevent false positive PR test results
  • adjust Ray test script for Ray 0.6.5

v1.19.1 (2019-05-06)

Bug fixes and other changes

  • add py2 deprecation message for the deep learning framework images

v1.19.0 (2019-04-30)

Features

  • add document embedding support to Object2Vec algorithm

v1.18.19 (2019-04-30)

Bug fixes and other changes

  • skip p2/p3 tests in eu-central-1

v1.18.18 (2019-04-29)

Bug fixes and other changes

  • add automatic model tuning integ test for TF script mode

v1.18.17 (2019-04-25)

Bug fixes and other changes

  • use unique names for test training jobs

v1.18.16 (2019-04-24)

Bug fixes and other changes

  • add KMS key option for Endpoint Configs
  • skip p2 test in regions without p2s, freeze urllib3, and specify allow_pickle=True for numpy
  • use correct TF version in empty framework_version warning
  • remove logging level overrides

Documentation changes

  • add environment setup instructions to CONTRIBUTING.md
  • add clarification around framework version constants
  • remove duplicate content from workflow readme
  • remove duplicate content from RL readme

v1.18.15 (2019-04-18)

Bug fixes and other changes

  • fix propagation of tags to SageMaker endpoint

v1.18.14.post1 (2019-04-17)

Documentation changes

  • remove duplicate content from Chainer readme

v1.18.14.post0 (2019-04-15)

Documentation changes

  • remove duplicate content from PyTorch readme and fix internal links

v1.18.14 (2019-04-11)

Bug fixes and other changes

  • make Local Mode export artifacts even after failure

v1.18.13 (2019-04-10)

Bug fixes and other changes

  • skip horovod p3 test in region with no p3
  • use unique training job names in TensorFlow script mode integ tests

v1.18.12 (2019-04-08)

Bug fixes and other changes

  • add integ test for tagging
  • use unique names for test training jobs
  • Wrap horovod code inside main function
  • add csv deserializer
  • restore notebook test

v1.18.11 (2019-04-04)

Bug fixes and other changes

  • local data source relative path includes the first directory
  • upgrade pylint and fix tagging with SageMaker models

Documentation changes

  • add info about unique job names

v1.18.10 (2019-04-03)

Bug fixes and other changes

  • make start time, end time and period configurable in sagemaker.analytics.TrainingJobAnalytics

Documentation changes

  • fix typo of argument spelling in linear learner docstrings

v1.18.9.post1 (2019-04-02)

Documentation changes

  • spelling error correction

v1.18.9.post0 (2019-04-01)

Documentation changes

  • move RL readme content into sphinx project

v1.18.9 (2019-03-28)

Bug fixes

  • hyperparameter query failure on script mode estimator attached to complete job

Other changes

  • add EI support for TFS framework

Documentation changes

  • add third-party libraries sections to using_chainer and using_pytorch topics

v1.18.8 (2019-03-26)

Bug fixes

  • fix ECR URI validation
  • remove unrestrictive principal * from KMS policy tests.

Documentation changes

  • edit description of local mode in overview.rst
  • add table of contents to using_chainer topic
  • fix formatting for HyperparameterTuner.attach()

v1.18.7 (2019-03-21)

Other changes

  • add pytest marks for integ tests using local mode
  • add account number and unit tests for govcloud

Documentation changes

  • move chainer readme content into sphinx and fix broken link in using_mxnet

v1.18.6.post0 (2019-03-20)

Documentation changes

  • add mandatory sagemaker_role argument to Local mode example.

v1.18.6 (2019-03-20)

Changes

  • enable new release process
  • Update inference pipelines documentation
  • Migrate content from workflow and pytorch readmes into sphinx project
  • Propagate Tags from estimator to model, endpoint, and endpoint config

1.18.5

  • bug-fix: pass kms id as parameter for uploading code with Server side encryption
  • feature: PipelineModel: Create a Transformer from a PipelineModel
  • bug-fix: AlgorithmEstimator: Make SupportedHyperParameters optional
  • feature: Hyperparameter: Support scaling hyperparameters
  • doc-fix: Remove duplicate content from main README.rst, /tensorflow/README.rst, and /sklearn/README.rst and add links to readthedocs content

1.18.4

  • doc-fix: Remove incorrect parameter for EI TFS Python README
  • feature: Predictor: delete SageMaker model
  • feature: PipelineModel: delete SageMaker model
  • bug-fix: Estimator.attach works with training jobs without hyperparameters
  • doc-fix: remove duplicate content from mxnet/README.rst
  • doc-fix: move overview content in main README into sphynx project
  • bug-fix: pass accelerator_type in deploy for REST API TFS Model
  • doc-fix: move content from tf/README.rst into sphynx project
  • doc-fix: move content from sklearn/README.rst into sphynx project
  • doc-fix: Improve new developer experience in README
  • feature: Add support for Coach 0.11.1 for Tensorflow

1.18.3.post1

  • doc-fix: fix README for PyPI

1.18.3

  • doc-fix: update information about saving models in the MXNet README
  • doc-fix: change ReadTheDocs links from latest to stable
  • doc-fix: add transform_fn information and fix input_fn signature in the MXNet README
  • feature: add support for Predictor to delete endpoint configuration by default when calling delete_endpoint()
  • feature: add support for Model to delete SageMaker model
  • feature: add support for Transformer to delete SageMaker model
  • bug-fix: fix default account for SKLearnModel

1.18.2

  • enhancement: Include SageMaker Notebook Instance version number in boto3 user agent, if available.
  • feature: Support for updating existing endpoint

1.18.1

  • enhancement: Add tuner to imports in sagemaker/__init__.py

1.18.0

  • bug-fix: Handle StopIteration in CloudWatch Logs retrieval
  • feature: Update EI TensorFlow latest version to 1.12
  • feature: Support for Horovod

1.17.2

  • feature: HyperparameterTuner: support VPC config

1.17.1

  • enhancement: Workflow: Specify tasks from which training/tuning operator to transform/deploy in related operators
  • feature: Supporting inter-container traffic encryption flag

1.17.0

  • bug-fix: Workflow: Revert appending Airflow retry id to default job name
  • feature: support for Tensorflow 1.12
  • feature: support for Tensorflow Serving 1.12
  • bug-fix: Revert appending Airflow retry id to default job name
  • bug-fix: Session: don't allow get_execution_role() to return an ARN that's not a role but has "role" in the name
  • bug-fix: Remove __all__ from __init__.py files
  • doc-fix: Add TFRecord split type to docs
  • doc-fix: Mention SM_HPS environment variable in MXNet README
  • doc-fix: Specify that Local Mode supports only framework and BYO cases
  • doc-fix: Add missing classes to API docs
  • doc-fix: Add information on necessary AWS permissions
  • bug-fix: Remove PyYAML to let docker-compose install the right version
  • feature: Update TensorFlow latest version to 1.12
  • enhancement: Add Model.transformer()
  • bug-fix: HyperparameterTuner: make include_cls_metadata default to False for everything except Frameworks

1.16.3

  • bug-fix: Local Mode: Allow support for SSH in local mode
  • bug-fix: Workflow: Append retry id to default Airflow job name to avoid name collisions in retry
  • bug-fix: Local Mode: No longer requires s3 permissions to run local entry point file
  • feature: Estimators: add support for PyTorch 1.0.0
  • bug-fix: Local Mode: Move dependency on sagemaker_s3_output from rl.estimator to model
  • doc-fix: Fix quotes in estimator.py and model.py

1.16.2

  • enhancement: Check for S3 paths being passed as entry point
  • feature: Add support for AugmentedManifestFile and ShuffleConfig
  • bug-fix: Add version bound for requests module to avoid conflicts with docker-compose and docker-py
  • bug-fix: Remove unnecessary dependency tensorflow
  • doc-fix: Change distribution to distributions
  • bug-fix: Increase docker-compose http timeout and health check timeout to 120.
  • feature: Local Mode: Add support for intermediate output to a local directory.
  • bug-fix: Update PyYAML version to avoid conflicts with docker-compose
  • doc-fix: Correct the numbered list in the table of contents
  • doc-fix: Add Airflow API documentation
  • feature: HyperparameterTuner: add Early Stopping support

1.16.1.post1

  • Documentation: add documentation for Reinforcement Learning Estimator.
  • Documentation: update TensorFlow README for Script Mode

1.16.1

  • feature: update boto3 to version 1.9.55

1.16.0

  • feature: Add 0.10.1 coach version
  • feature: Add support for SageMaker Neo
  • feature: Estimators: Add RLEstimator to provide support for Reinforcement Learning
  • feature: Add support for Amazon Elastic Inference
  • feature: Add support for Algorithm Estimators and ModelPackages: includes support for AWS Marketplace
  • feature: Add SKLearn Estimator to provide support for SciKit Learn
  • feature: Add Amazon SageMaker Semantic Segmentation algorithm to the registry
  • feature: Add support for SageMaker Inference Pipelines
  • feature: Add support for SparkML serving container

1.15.2

  • bug-fix: Fix FileNotFoundError for entry_point without source_dir
  • doc-fix: Add missing feature 1.5.0 in change log
  • doc-fix: Add README for airflow

1.15.1

  • enhancement: Local Mode: add explicit pull for serving
  • feature: Estimators: dependencies attribute allows export of additional libraries into the container
  • feature: Add APIs to export Airflow transform and deploy config
  • bug-fix: Allow code_location argument to be S3 URI in training_config API
  • enhancement: Local Mode: add explicit pull for serving

1.15.0

  • feature: Estimator: add script mode and Python 3 support for TensorFlow
  • bug-fix: Changes to use correct S3 bucket and time range for dataframes in TrainingJobAnalytics.
  • bug-fix: Local Mode: correctly handle the case where the model output folder doesn't exist yet
  • feature: Add APIs to export Airflow training, tuning and model config
  • doc-fix: Fix typos in tensorflow serving documentation
  • doc-fix: Add estimator base classes to API docs
  • feature: HyperparameterTuner: add support for Automatic Model Tuning's Warm Start Jobs
  • feature: HyperparameterTuner: Make input channels optional
  • feature: Add support for Chainer 5.0
  • feature: Estimator: add support for MetricDefinitions
  • feature: Estimators: add support for Amazon IP Insights algorithm

1.14.2

  • bug-fix: support CustomAttributes argument in local mode invoke_endpoint requests
  • enhancement: add content_type parameter to sagemaker.tensorflow.serving.Predictor
  • doc-fix: add TensorFlow Serving Container docs
  • doc-fix: fix rendering error in README.rst
  • enhancement: Local Mode: support optional input channels
  • build: added pylint
  • build: upgrade docker-compose to 1.23
  • enhancement: Frameworks: update warning for not setting framework_version as we aren't planning a breaking change anymore
  • feature: Estimator: add script mode and Python 3 support for TensorFlow
  • enhancement: Session: remove hardcoded 'training' from job status error message
  • bug-fix: Updated Cloudwatch namespace for metrics in TrainingJobsAnalytics
  • bug-fix: Changes to use correct s3 bucket and time range for dataframes in TrainingJobAnalytics.
  • enhancement: Remove MetricDefinition lookup via tuning job in TrainingJobAnalytics

1.14.1

  • feature: Estimators: add support for Amazon Object2Vec algorithm

1.14.0

  • feature: add support for sagemaker-tensorflow-serving container
  • feature: Estimator: make input channels optional

1.13.0

  • feature: Estimator: add input mode to training channels
  • feature: Estimator: add model_uri and model_channel_name parameters
  • enhancement: Local Mode: support output_path. Can be either file:// or s3://
  • enhancement: Added image uris for SageMaker built-in algorithms for SIN/LHR/BOM/SFO/YUL
  • feature: Estimators: add support for MXNet 1.3.0, which introduces a new training script format
  • feature: Documentation: add explanation for the new training script format used with MXNet
  • feature: Estimators: add distributions for customizing distributed training with the new training script format

1.12.0

  • feature: add support for TensorFlow 1.11.0

1.11.3

  • feature: Local Mode: Add support for Batch Inference
  • feature: Add timestamp to secondary status in training job output
  • bug-fix: Local Mode: Set correct default values for additional_volumes and additional_env_vars
  • enhancement: Local Mode: support nvidia-docker2 natively
  • warning: Frameworks: add warning for upcoming breaking change that makes framework_version required

1.11.2

  • enhancement: Enable setting VPC config when creating/deploying models
  • enhancement: Local Mode: accept short lived credentials with a warning message
  • bug-fix: Local Mode: pass in job name as parameter for training environment variable

1.11.1

  • enhancement: Local Mode: add training environment variables for AWS region and job name
  • doc-fix: Instruction on how to use preview version of PyTorch - 1.0.0.dev.
  • doc-fix: add role to MXNet estimator example in readme
  • bug-fix: default TensorFlow json serializer accepts dict of numpy arrays

1.11.0

  • bug-fix: setting health check timeout limit on local mode to 30s
  • bug-fix: make Hyperparameters in local mode optional.
  • enhancement: add support for volume KMS key to Transformer
  • feature: add support for GovCloud

1.10.1

  • feature: add train_volume_kms_key parameter to Estimator classes
  • doc-fix: add deprecation warning for current MXNet training script format
  • doc-fix: add docs on deploying TensorFlow model directly from existing model
  • doc-fix: fix code example for using Gzip compression for TensorFlow training data

1.10.0

  • feature: add support for TensorFlow 1.10.0

1.9.3.1

  • doc-fix: fix rst warnings in README.rst

1.9.3

  • bug-fix: Local Mode: Create output/data directory expected by SageMaker Container.
  • bug-fix: Estimator accepts the vpc configs made capable by 1.9.1

1.9.2

  • feature: add support for TensorFlow 1.9

1.9.1

  • bug-fix: Estimators: Fix serialization of single records
  • bug-fix: deprecate enable_cloudwatch_metrics from Framework Estimators.
  • enhancement: Enable VPC config in training job creation

1.9.0

  • feature: Estimators: add support for MXNet 1.2.1

1.8.0

  • bug-fix: removing PCA from tuner
  • feature: Estimators: add support for Amazon k-nearest neighbors(KNN) algorithm

1.7.2

  • bug-fix: Prediction output for the TF_JSON_SERIALIZER
  • enhancement: Add better training job status report

1.7.1

  • bug-fix: get_execution_role no longer fails if user can't call get_role
  • bug-fix: Session: use existing model instead of failing during create_model()
  • enhancement: Estimator: allow for different role from the Estimator's when creating a Model or Transformer

1.7.0

  • feature: Transformer: add support for batch transform jobs
  • feature: Documentation: add instructions for using Pipe Mode with TensorFlow

1.6.1

  • feature: Added multiclass classification support for linear learner algorithm.

1.6.0

  • feature: Add Chainer 4.1.0 support

1.5.4

  • feature: Added Docker Registry for all 1p algorithms in amazon_estimator.py
  • feature: Added get_image_uri method for 1p algorithms in amazon_estimator.py
  • Support SageMaker algorithms in FRA and SYD regions

1.5.3

  • bug-fix: Can create TrainingJobAnalytics object without specifying metric_names.
  • bug-fix: Session: include role path in get_execution_role() result
  • bug-fix: Local Mode: fix RuntimeError handling

1.5.2

  • Support SageMaker algorithms in ICN region

1.5.1

  • enhancement: Let Framework models reuse code uploaded by Framework estimators
  • enhancement: Unify generation of model uploaded code location
  • feature: Change minimum required scipy from 1.0.0 to 0.19.0
  • feature: Allow all Framework Estimators to use a custom docker image.
  • feature: Option to add Tags on SageMaker Endpoints

1.5.0

  • feature: Add Support for PyTorch Framework
  • feature: Estimators: add support for TensorFlow 1.7.0
  • feature: Estimators: add support for TensorFlow 1.8.0
  • feature: Allow Local Serving of Models in S3
  • enhancement: Allow option for HyperparameterTuner to not include estimator metadata in job
  • bug-fix: Estimators: Join tensorboard thread after fitting

1.4.2

  • bug-fix: Estimators: Fix attach for LDA
  • bug-fix: Estimators: allow code_location to have no key prefix
  • bug-fix: Local Mode: Fix s3 training data download when there is a trailing slash

1.4.1

  • bug-fix: Local Mode: Fix for non Framework containers

1.4.0

  • bug-fix: Remove all and add noqa in init
  • bug-fix: Estimators: Change max_iterations hyperparameter key for KMeans
  • bug-fix: Estimators: Remove unused argument job_details for EstimatorBase.attach()
  • bug-fix: Local Mode: Show logs in Jupyter notebooks
  • feature: HyperparameterTuner: Add support for hyperparameter tuning jobs
  • feature: Analytics: Add functions for metrics in Training and Hyperparameter Tuning jobs
  • feature: Estimators: add support for tagging training jobs

1.3.0

  • feature: Add chainer

1.2.5

  • bug-fix: Change module names to string type in all
  • feature: Save training output files in local mode
  • bug-fix: tensorflow-serving-api: SageMaker does not conflict with tensorflow-serving-api module version
  • feature: Local Mode: add support for local training data using file://
  • feature: Updated TensorFlow Serving api protobuf files
  • bug-fix: No longer poll for logs from stopped training jobs

1.2.4

  • feature: Estimators: add support for Amazon Random Cut Forest algorithm

1.2.3

  • bug-fix: Fix local mode not using the right s3 bucket

1.2.2

  • bug-fix: Estimators: fix valid range of hyper-parameter 'loss' in linear learner

1.2.1

  • bug-fix: Change Local Mode to use a sagemaker-local docker network

1.2.0

  • feature: Add Support for Local Mode
  • feature: Estimators: add support for TensorFlow 1.6.0
  • feature: Estimators: add support for MXNet 1.1.0
  • feature: Frameworks: Use more idiomatic ECR repository naming scheme

1.1.3

  • bug-fix: TensorFlow: Display updated data correctly for TensorBoard launched from run_tensorboard_locally=True
  • feature: Tests: create configurable sagemaker_session pytest fixture for all integration tests
  • bug-fix: Estimators: fix inaccurate hyper-parameters in kmeans, pca and linear learner
  • feature: Estimators: Add new hyperparameters for linear learner.

1.1.2

  • bug-fix: Estimators: do not call create bucket if data location is provided

1.1.1

  • feature: Estimators: add requirements.txt support for TensorFlow

1.1.0

  • feature: Estimators: add support for TensorFlow-1.5.0
  • feature: Estimators: add support for MXNet-1.0.0
  • feature: Tests: use sagemaker_timestamp when creating endpoint names in integration tests
  • feature: Session: print out billable seconds after training completes
  • bug-fix: Estimators: fix LinearLearner and add unit tests
  • bug-fix: Tests: fix timeouts for PCA async integration test
  • feature: Predictors: allow predictor.predict() in the JSON serializer to accept dictionaries

1.0.4

  • feature: Estimators: add support for Amazon Neural Topic Model(NTM) algorithm
  • feature: Documentation: fix description of an argument of sagemaker.session.train
  • feature: Documentation: add FM and LDA to the documentation
  • feature: Estimators: add support for async fit
  • bug-fix: Estimators: fix estimator role expansion

1.0.3

  • feature: Estimators: add support for Amazon LDA algorithm
  • feature: Hyperparameters: add data_type to hyperparameters
  • feature: Documentation: update TensorFlow examples following API change
  • feature: Session: support multi-part uploads
  • feature: add new SageMaker CLI

1.0.2

  • feature: Estimators: add support for Amazon FactorizationMachines algorithm
  • feature: Session: correctly handle TooManyBuckets error_code in default_bucket method
  • feature: Tests: add training failure tests for TF and MXNet
  • feature: Documentation: show how to make predictions against existing endpoint
  • feature: Estimators: implement write_spmatrix_to_sparse_tensor to support any scipy.sparse matrix

1.0.1

  • api-change: Model: Remove support for 'supplemental_containers' when creating Model
  • feature: Documentation: multiple updates
  • feature: Tests: ignore tests data in tox.ini, increase timeout for endpoint creation, capture exceptions during endpoint deletion, tests for input-output functions
  • feature: Logging: change to describe job every 30s when showing logs
  • feature: Session: use custom user agent at all times
  • feature: Setup: add travis file

1.0.0

  • Initial commit