Skip to content

Latest commit

 

History

History

CHT

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CHT - Combined Haplotype Test

This directory contains the Combined Haplotype Test (CHT) portion of the WASP pipeline.

Introduction

The CHT is designed to test for genetic associations with quantitatitve traits that can be measured with next-generation sequencing reads. For example experiments such as ChIP-seq or RNA-seq that generate read counts can be used. The test uses both read depth from a test region and allelic imbalance of reads that overlap phased heterozygous SNPs in the same test region. The test SNP whose genotypes are tested for association can be within or nearby the test region. (The SNP should not be too far away, because phasing information between SNPs is currently assumed to be correct.)

The test accounts for overdispersion in the data (excess variation that cannot be attributed to binomial sampling or genotype) with three dispersion parameters. Two of these parameters are globally estimated for each individual (i.e. fixed across test regions), while one is estimated for each region.

The test is described in our paper: van de Geijn B*, McVicker G*, Gilad Y, Pritchard JK. "WASP: allele-specific software for robust discovery of molecular quantitative trait loci"

Input Format

The combined haplotype test script takes a set of input files with read count and genotype information for each individual.

Each file is a space-delimited text file that contains a single header line.

The columns in the input file are as follows (example values are given in [brackets]):

  1. CHROM - name of chromosome [chr1]
  2. TEST.SNP.POS - position of test SNP on chromosome (first base is numbered 1) [963531]
  3. TEST.SNP.ID - identifier for test SNP [rs2488994]
  4. TEST.SNP.REF.ALLELE - reference allele [A]
  5. TEST.SNP.ALT.ALLELE - alternate allele [G]
  6. TEST.SNP.GENOTYPE - sum of genotype probabilties (near 0 = homo ref, near 1 = het, near 2 = homo alt) [1.01]
  7. TEST.SNP.HAPLOTYPE - gives phasing of alleles [0|1]
  8. REGION.START - start of region tested for association (where read counts are from) [963155]
  9. REGION.END - end of region tested for association [965155]
  10. REGION.SNP.POS - positions of linked SNPs in test region [963199;963240;963531;964027;964043;964062;964088;964159;964216;964218;964219;964357;964433;964525;964996]
  11. REGION.SNP.HET.PROB - heterozygote probabilities for linked SNPs [0.99;0.99;0.99;1.00;0.99;0.99;0.99;0.99;1.00;0.99;0.99;0.99;0.99;0.99;0.99]
  12. REGION.SNP.LINKAGE.PROB - linkage probabilities for linked SNPs [1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00;1.00]
  13. REGION.SNP.REF.HAP.COUNT - number of reads at each linked SNP that match the allele that is linked to the test SNP reference allele [0;0;0;0;0;0;0;0;0;0;0;0;0;1;0]
  14. REGION.SNP.ALT.HAP.COUNT - number of reads at each linked SNP that match the allele that is linked to the test SNP alternative allele [0;1;0;0;0;1;0;1;1;0;0;3;1;1;3]
  15. REGION.SNP.OTHER.HAP.COUNT - number of reads matching neither ref nor alt at each linked SNP [0;0;0;0;0;0;0;0;0;0;0;0;0;0;0]
  16. REGION.READ.COUNT - number of reads in region [72]
  17. GENOMEWIDE.READ.COUNT - total number of mapped, filtered reads for this individual [26219310]

These input files can be generated using the following workflow or created by the user.

Obtaining phased genotype data

Step 3 of the CHT workflow requires phased genotype data. The snp2h5 program provided with WASP can read phased genotypes from IMPUTE2 or VCF formatted files.

Several methods are available for genotype phasing:

  • IMPUTE2 can perform both imputation and genotype phasing. (Phasing information is written to a file specified with with -o option). Output files written by IMPUTE2 can be read directly by snp2h5.

  • SHAPEIT is a fast method for genotype phasing. Output files from SHAPEIT can be converted to IMPUTE2's .hap format or to VCF format using the shapeit -convert command described in the SHAPEIT documentation.

  • BEAGLE can be used for both imputation and genotype phasing. BEAGLE output files can be converted to VCF format using the beagle2vcf utility program provided with BEAGLE.

If you are using samples that are part of the 1000 Genomes project, genotypes that have been phased using SHAPEIT can be downloaded from the 1000 Genomes website.

Workflow

We now provide a Snakemake workflow that can be used to run the entire CHT pipeline. For more information see the Snakemake README

An example workflow in the form of a shell script is also provided in example_workflow.sh script. This workflow uses data in the example_data directory.

Some of the input files that we used for our paper can be downloaded from here.

The following steps can be used to generate input files and run the Combined Haplotype Test. The examples given below use the example data files that are provided in the example_data directory.

Step 1

Map reads to the genome, and filter them to correct for mapping bias. This procedure is described by the README in the mapping directory.

Step 2

Convert SNP data to HDF5 format using the program snp2h5. HDF5 files are an efficient binary data format used by WASP scripts. The snp2h5 program can take VCF or IMPUTE2 files as input.

./snp2h5/snp2h5 --chrom example_data/chromInfo.hg19.txt \
      --format impute \
      --geno_prob example_data/geno_probs.h5 \
      --snp_index example_data/snp_index.h5 \
      --snp_tab example_data/snp_tab.h5 \
      --haplotype example_data/haps.h5 \
      example_data/genotypes/chr*.hg19.impute2.gz \
      example_data/genotypes/chr*.hg19.impute2_haps.gz

Step 3

Convert FASTA files to HDF5 format. The HDF5 sequence files are currently used for the GC content correction part of CHT.

./snp2h5/fasta2h5 --chrom example_data/chromInfo.hg19.txt \
	--seq example_data/seq.h5 \
	/data/external_public/reference_genomes/hg19/chr*.fa.gz

Step 4

Extract read counts from BAM files (from Step 1) and write them to HDF5 files using the bam2h5.py program. This must be done for each sample/individual in the dataset. Note that BAM files must be sorted and indexed (e.g. using samtools sort and samtools index) before bam2h5.py can be run.

python CHT/bam2h5.py --chrom example_data/chromInfo.hg19.txt \
      --snp_index example_data/snp_index.h5 \
      --snp_tab example_data/snp_tab.h5 \
      --haplotype example_data/haps.h5 \
      --individual $INDIVIDUAL \
      --ref_as_counts example_data/H3K27ac/ref_as_counts.$INDIVIDUAL.h5 \
      --alt_as_counts example_data/H3K27ac/alt_as_counts.$INDIVIDUAL.h5 \
      --other_as_counts example_data/H3K27ac/other_as_counts.$INDIVIDUAL.h5 \
      --read_counts example_data/H3K27ac/read_counts.$INDIVIDUAL.h5 \
      example_data/H3K27ac/$INDIVIDUAL.chr*.keep.rmdup.bam

Step 5

Create a BED-like input file that defines both the "test SNP" and the "target regions" that are to be tested for association.

For example, if the goal is to identify histone-mark QTLs, the target regions should be ChIP-seq peaks, and the test SNPs should be SNPs that are near-to or within the ChIP-seq peaks.

Note (added 4/25/2016): the target regions for a single test regions should be non-overlapping. Overlapping target regions can cause some reads to be counted multiple times in a single test and inflate the test statistic. We plan to add a check for this to the extract haplotype read counts.

If the goal is to identify eQTLs, the target regions should be the exons of genes, and the test SNPs could be SNPs within a specified distance of the TSS. If a gene contains overlapping or duplicate exons these should be collapsed.

We provide a script, get_target_regions.py, that can generate a list of target regions and test SNPs for ChIP-seq peaks that match specified criteria:

python CHT/get_target_regions.py \
     --target_region_size 2000 \
     --min_as_count 10 \
     --min_read_count 100 \
     --min_het_count 1 \
     --min_minor_allele_count 1\
     --chrom example_data/chromInfo.hg19.txt \
     --read_count_dir example_data/H3K27ac \
     --individuals $H3K27AC_SAMPLES_FILE \
     --samples $ALL_SAMPLES_FILE \
     --snp_tab example_data/snp_tab.h5 \
     --snp_index example_data/snp_index.h5 \
     --haplotype example_data/haps.h5 \
     --output_file example_data/H3K27ac/chr22.peaks.txt.gz

An example of a a test SNP / target region input file written by this script is here:

example_data/H3K27ac/chr22.peaks.txt.gz

For other types of datasets the input file must be generated by the user. The whitespace-delimited columns of the input file are as follows (example values are given in [brackets])::

  1. The chromosome of the test-SNP [chr22]
  2. The position of the SNP. Unlike BED files, first base of chromosome is 1. [16050408]
  3. The end position of the SNP. Currently ignored. [16050408]
  4. The reference allele of the SNP [T]
  5. The non-reference allele of the SNP [ C]
  6. The strand of the SNP. Currently ignored and assumed to be '+' . [+]
  7. The name of the test. Currently ignored. [chr22. 16050408]
  8. A single start coordinate or a ';'-delimited list of start coordinates for the target region. Multiple starts can be given if the target region is discontiguous, such as the exons of a gene. [16049408]
  9. A single end coordinate or a ';'-delimited list of end coordinate for the target region. [16051408]

Step 6

Create a CHT input file for each individual using the extract_haplotype_read_counts.py script. This script reads the test SNPs and target regions from the input file created in Step 5.

python CHT/extract_haplotype_read_counts.py \
   --chrom example_data/chromInfo.hg19.txt \
   --snp_index example_data/snp_index.h5 \
   --snp_tab example_data/snp_tab.h5 \
   --geno_prob example_data/geno_probs.h5 \
   --haplotype example_data/haps.h5 \
   --samples $ALL_SAMPLES_FILE \
   --individual $INDIVIDUAL \
   --ref_as_counts example_data/H3K27ac/ref_as_counts.$INDIVIDUAL.h5 \
   --alt_as_counts example_data/H3K27ac/alt_as_counts.$INDIVIDUAL.h5 \
   --other_as_counts example_data/H3K27ac/other_as_counts.$INDIVIDUAL.h5 \
   --read_counts example_data/H3K27ac/read_counts.$INDIVIDUAL.h5 \
   example_data/H3K27ac/chr22.peaks.txt.gz \
   | gzip > example_data/H3K27ac/haplotype_read_counts.$INDIVIDUAL.txt.gz

Step 7

Adjust read counts in CHT input files by modeling relationship between read depth and GC content & peakiness in each sample. This uses the seq.h5 file created by fasta2h5 in Step 3.

IN_FILE=example_data/H3K27ac/input_files.txt
OUT_FILE=example_data/H3K27ac/output_files.txt
ls example_data/H3K27ac/haplotype_read_counts* | grep -v adjusted > $IN_FILE
cat $IN_FILE | sed 's/.txt/.adjusted.txt/' >  $OUT_FILE

python CHT/update_total_depth.py --seq example_data/seq.h5 $IN_FILE $OUT_FILE

Step 8

Adjust heterozygote probabilities in CHT input files to account for possible genotyping errors. Total counts of reference and alternative alleles are used to adjust the probability. In this example we just provide the same H3K27ac read counts, however you could also use read counts combined across many different experiments or (perhaps ideally) from DNA sequencing.

This must be done for each individual in the dataset.

python CHT/update_het_probs.py \
   --ref_as_counts example_data/H3K27ac/ref_as_counts.$INDIVIDUAL.h5  \
   --alt_as_counts example_data/H3K27ac/alt_as_counts.$INDIVIDUAL.h5 \
   example_data/H3K27ac/haplotype_read_counts.$INDIVIDUAL.adjusted.txt.gz
   example_data/H3K27ac/haplotype_read_counts.$INDIVIDUAL.adjusted.hetp.txt.gz

Step 9

Estimate overdispersion parameters for the allele-specific test (beta binomial):

python CHT/fit_as_coefficients.py \
	example_data/H3K27ac/cht_input_files.txt \
	example_data/H3K27ac/cht_as_coef.txt

and for the for association test (beta-negative binomial):

python CHT/fit_bnb_coefficients.py \
	--min_counts 50 \
	--min_as_counts 10 \
	example_data/H3K27ac/cht_input_files.txt \
	example_data/H3K27ac/cht_bnb_coef.txt

Step 10

Run the combined haplotype test:

python CHT/combined_test.py --min_as_counts 10 \
	--bnb_disp example_data/H3K27ac/cht_bnb_coef.txt \
	--as_disp example_data/H3K27ac/cht_as_coef.txt \
	example_data/H3K27ac/cht_input_files.txt \
	example_data/H3K27ac/cht_results.txt

Output

The combined haplotype test outputs a tab delimited text file with the following columns:

  1. Chromosome - location of test SNP and target region,
  2. Test SNP position - position of test SNP
  3. Test SNP identifier - identifier of test SNP
  4. Test SNP Ref Allele - reference allele of test SNP
  5. Test SNP Alt Allele - alternative allele of test SNP
  6. Target Region Start - start position of target region
  7. Target Region End - end position of target region
  8. Log likelihood 1 - log likelihood under Null model
  9. Log likelihood 2 - log likelihood under Alternative model
  10. Chi-squared statistic - likelihood ratio test statistic
  11. P-value - p-value from likelihood ratio test
  12. Alpha - maximum likelihood estimate of alpha parameter (expression level of reference allele)
  13. Beta - maximum likelihood estimate of beta parameter (expression level of alternative allele)
  14. Phi - maximum likelihood estimate of phi parameter (beta-negative-binomial overdispersion parameter for target region)
  15. Total number of allele-specific read counts for target region summed across individuals
  16. Total number of reference haplotype allele-specific read counts
  17. Total number of alt haplotype allele-specific read counts
  18. Total number of mapped reads for the target region, summed across individuals

Updating total read depths and heterozygous probabilities

Prior to running the CHT, we recommend updating the heterozygote probabilities for the target SNPs using all of the available reads for each individual. This is done using the script update_het_probs.py as described in Step 8.

We also recommend correcting read depths based on the fraction of reads that fall within peaks for each sample and the GC content of each region. This is done using the script update_total_depth.py as described in Step 7.

Choosing dispersion parameters

The CHT includes three parameters that model the dispersion of the read count data. One dispersion parameter is estimated separately for each region when the CHT is run. The other two parameters are estimated across all regions, and can be considered hyperparameters. They are estimated before running the CHT using the scripts fit_as_coefficients.py and fit_bnb_coefficients.py as described in Step 9.

We suggest running the CHT on permuted data and visualizing the results with a quantile-quantile plot to ensure that the test is working properly. If the permutations do not follow the null distribution, this may indicate that the dispersion parameters have not been accurately estimated. In this case, you may manually set the overdispersion parameters or adjust the p-values according to the permuted distribution. One of the command line options (-s) runs the test on permuted genotypes.

Using Principal Components as Covariates (optional)

The CHT allows principal componant loadings to be included as covariates in the Beta-Negative-Binomial part of the model. An example of how to perform PCA and obtain principal component loadings is provided in the file example_data/H3K27ac/get_PCs.R

Note: we only recommend using PCs as covariates in when sample sizes are fairly large (e.g. > 30 individuals).

The following example shows how the first 2 PCs can be used as covariates (replaces Step 10 above):

Rscript  example_data/H3K27ac/get_PCs.R > example_data/H3K27ac/pcs.txt

python CHT/combined_test.py --min_as_counts 10 \
    --bnb_disp example_data/H3K27ac/cht_bnb_coef.txt \
    --as_disp example_data/H3K27ac/cht_as_coef.txt \
    --num_pcs 2 --pc_file example_data/H3K27ac/pcs.txt \
    example_data/H3K27ac/cht_input_files.txt \
    example_data/H3K27ac/cht_results.PCs.txt

Contact

For questions about the combined haplotype test, please contact Graham McVicker ([email protected]) or Bryce van de Geijn ([email protected]).