-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcudaBoids.cu
271 lines (244 loc) · 8.78 KB
/
cudaBoids.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// cudaBoids.cu - Devon McKee, 2022
#include <glad.h>
#include <GLFW/glfw3.h>
#include "cuda_runtime.h"
#include "cuda_gl_interop.h"
#include "device_launch_parameters.h"
#include <vector>
#include "VecMat.h"
#include "Camera.h"
#include "CameraControls.h"
#include "Misc.h"
#include "GLXtras.h"
#include "GeomUtils.h"
#include "dCube.h"
#define cudaCheck(error) if (error != cudaSuccess) { printf("CUDA error: %s at %s:%d\n", cudaGetErrorString(error), __FILE__, __LINE__); exit(1); }
using std::vector;
using std::string;
GLuint renderProgram = 0;
GLuint boidBuffer = 0;
cudaGraphicsResource* boidBufferGraphRes;
// strange issue running more than 1259 boids, needs to be investigated further
const int STARTING_BOIDS = 1259;
const int POINT_SIZE = 2;
const int NUM_GPU_THREADS = 256;
// ----- Simulation constants -----
#define BOID_SPEED 0.005f
#define BOID_PERCEPTION 0.1f
#define WALL_RANGE 0.05f
#define ALIGNMENT_WEIGHT 1.0f
#define COHESION_WEIGHT 1.0f
#define SEPARATION_WEIGHT 1.0f
int win_width = 800, win_height = 800;
Camera camera((float)win_width / win_height, vec3(0, 0, 0), vec3(0, 0, -5));
GLFWwindow* window;
vec3 lightPos = vec3(1, 1, 0);
dCube cube;
cudaError_t c_stat;
const char* render_glsl_version = "#version 430";
float bgColor[4] = { 0.5f, 0.5f, 0.5f, 1.0f };
float boidColor[4] = { 0.0f, 0.0f, 0.0f, 1.0f };
// ----- Float3 operators -----
__host__ __device__ float3 operator-(const float3 & v) { return float3{ -v.x, -v.y, -v.z }; }
__host__ __device__ float3 operator+(const float3 & l, const float3 & r) { return float3{ l.x + r.x, l.y + r.y, l.z + r.z }; }
__host__ __device__ float3 operator-(const float3 & l, const float3 & r) { return float3{ l.x - r.x, l.y - r.y, l.z - r.z }; }
__host__ __device__ float3 operator*(const float3 & l, const float3 & r) { return float3{ l.x * r.x, l.y * r.y, l.z * r.z }; }
__host__ __device__ float3 operator*(const float3 & l, float r) { return float3{ l.x * r, l.y * r, l.z * r }; }
__host__ __device__ float3 operator/(const float3 & l, float r) { float _d = 1.f / r; return l * _d; }
__host__ __device__ float b_dist(float3 p1, float3 p2) { return (float)sqrt(pow(p2.x - p1.x, 2) + pow(p2.y - p1.y, 2) + pow(p2.z - p1.z, 2)); }
__host__ __device__ float b_dot(const float3 & a, const float3 & b) { return a.x * b.x + a.y * b.y + a.z * b.z; }
__host__ __device__ float b_length(const float3 & v) { return sqrt(b_dot(v, v)); }
__host__ __device__ float3 b_normalize(const float3 & v) { return v / b_length(v); }
struct Boid;
__global__ void boidKernel(Boid* b, size_t n_boids);
struct Boid {
float3 pos, vel, col;
Boid() {
pos = float3{ rand_float(-1.0f, 1.0f), rand_float(-1.0f, 1.0f), rand_float(-1.0f, 1.0f) };
vel = b_normalize(float3{ rand_float(-1.0f, 1.0f), rand_float(-1.0f, 1.0f), rand_float(-1.0f, 1.0f) }) * BOID_SPEED;
col = float3{ boidColor[0], boidColor[1], boidColor[2] };
}
};
Boid* boids;
Boid* boids_dp;
size_t n_boids = STARTING_BOIDS;
void openGLErrorCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam) {
fprintf(stderr, "GL CALLBACK: %s type = 0x%x, severity = 0x%x, message = %s\n", (type == GL_DEBUG_TYPE_ERROR ? "** GL ERROR **" : ""), type, severity, message);
}
void compileShaders() {
renderProgram = LinkProgramViaFile("shaders/render.vert", "shaders/render.frag");
if (!renderProgram) {
fprintf(stderr, "SHADER: Error linking render shader! Exiting...\n");
exit(1);
}
}
void b_initialize() {
cube.loadBuffer();
boids = new Boid[n_boids];
size_t b_size = sizeof(Boid) * n_boids;
glGenBuffers(1, &boidBuffer);
glBindBuffer(GL_ARRAY_BUFFER, boidBuffer);
glBufferData(GL_ARRAY_BUFFER, b_size, boids, GL_STATIC_COPY);
glBindBuffer(GL_ARRAY_BUFFER, 0);
cudaCheck(cudaGraphicsGLRegisterBuffer(&boidBufferGraphRes, boidBuffer, cudaGraphicsRegisterFlagsNone));
cudaCheck(cudaGraphicsMapResources(1, &boidBufferGraphRes, 0));
cudaCheck(cudaGraphicsResourceGetMappedPointer((void**)&boids_dp, &b_size, boidBufferGraphRes));
}
void b_terminate() {
cube.unloadBuffer();
cudaCheck(cudaGraphicsUnmapResources(1, &boidBufferGraphRes, 0));
cudaCheck(cudaGraphicsUnregisterResource(boidBufferGraphRes));
glDeleteBuffers(1, &boidBuffer);
delete boids;
}
void compute() {
// Dispatch kernel
int num_blocks = (int)floor(n_boids / NUM_GPU_THREADS) + (n_boids % NUM_GPU_THREADS == 0 ? 0 : 1);
//printf("Dispatching CUDA with %d threads and %d blocks\n", NUM_GPU_THREADS, num_blocks);
boidKernel<<<num_blocks, NUM_GPU_THREADS>>>(boids_dp, n_boids);
cudaCheck(cudaGetLastError());
cudaCheck(cudaDeviceSynchronize());
}
void display() {
glClearColor(bgColor[0], bgColor[1], bgColor[2], bgColor[3]);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
cube.display(camera);
// Render boids
glUseProgram(renderProgram);
glPointSize(POINT_SIZE);
glBindBuffer(GL_ARRAY_BUFFER, boidBuffer);
VertexAttribPointer(renderProgram, "point", 3, sizeof(Boid), (GLvoid*)offsetof(Boid, pos));
VertexAttribPointer(renderProgram, "color", 3, sizeof(Boid), (GLvoid*)offsetof(Boid, col));
glUniform4f(0, boidColor[0], boidColor[1], boidColor[2], boidColor[3]);
SetUniform(renderProgram, "persp", camera.persp);
SetUniform(renderProgram, "modelview", camera.modelview);
glDrawArrays(GL_POINTS, 0, (int)n_boids);
glFlush();
}
int main() {
srand((int)time(NULL));
c_stat = cudaSetDevice(0);
if (c_stat != cudaSuccess) { printf("No CUDA-capable GPU found! Exiting...\n"); return 1; }
if (!glfwInit()) return 1;
window = glfwCreateWindow(win_width, win_height, "Cuda Boids", NULL, NULL);
if (!window) { glfwTerminate(); return 1; }
glfwSetWindowPos(window, 100, 100);
glfwMakeContextCurrent(window);
gladLoadGLLoader((GLADloadproc)glfwGetProcAddress);
PrintGLErrors();
compileShaders();
glfwWindowHint(GLFW_SAMPLES, 4);
glfwSwapInterval(1);
InitializeCallbacks(window);
//glEnable(GL_DEBUG_OUTPUT);
glDebugMessageCallback(openGLErrorCallback, 0);
b_initialize();
double lastFrame = 0, lastSim = 0;
while (!glfwWindowShouldClose(window)) {
double now = glfwGetTime();
double deltaTime = now - lastFrame;
if ((now - lastSim) >= (1.0 / 60)) {
compute();
}
display();
glfwPollEvents();
glfwSwapBuffers(window);
}
b_terminate();
glfwDestroyWindow(window);
glfwTerminate();
}
// ----- DEVICE CODE -----
__device__ void b_findNeighbors(Boid b, Boid* boids, size_t n_boids, int* nb, size_t &n_nb) {
for (size_t i = 0; i < n_boids; i++) {
float d = b_dist(b.pos, boids[i].pos);
if (&boids[i] != &b && d < BOID_PERCEPTION && d > 0)
nb[n_nb++] = i;
}
}
__device__ float3 b_alignment(Boid b, Boid* boids, int* nb, size_t n_nb) {
float3 cv = { 0.0f };
int nc = 0;
for (size_t i = 0; i < n_nb; i++) {
size_t n = nb[i];
cv = cv + boids[n].vel;
nc++;
}
if (nc > 0) {
cv = cv / (float)nc;
cv = b_normalize(cv);
return cv;
} else {
return float3{ 0.0f };
}
}
__device__ float3 b_cohesion(Boid b, Boid* boids, int* nb, size_t n_nb) {
float3 cv{ 0.0f };
int nc = 0;
for (size_t i = 0; i < n_nb; i++) {
size_t n = nb[i];
cv = cv + boids[n].pos;
nc++;
}
if (nc > 0) {
cv = cv / (float)nc;
cv = cv - b.pos;
cv = b_normalize(cv);
return cv;
} else {
return float3{ 0.0f };
}
}
__device__ float3 b_separation(Boid b, Boid* boids, int* nb, size_t n_nb) {
float3 cv{ 0.0f };
float nc = 0;
for (size_t i = 0; i < n_nb; i++) {
size_t n = nb[i];
float3 iv = b.pos - boids[n].pos;
iv = b_normalize(iv);
iv = iv / b_dist(b.pos, boids[n].pos);
cv = cv + iv;
nc++;
}
if (nc > 0) {
cv = cv / nc;
cv = b_normalize(cv);
return cv;
} else {
return float3{ 0.0f };
}
}
__device__ float3 b_avoidance(Boid &b) {
if (b.pos.x > 1.0f) b.pos.x = -1.0f;
if (b.pos.x < -1.0f) b.pos.x = 1.0f;
if (b.pos.y > 1.0f) b.pos.y = -1.0f;
if (b.pos.y < -1.0f) b.pos.y = 1.0f;
if (b.pos.z > 1.0f) b.pos.z = -1.0f;
if (b.pos.z < -1.0f) b.pos.z = 1.0f;
if (b.pos.y > 1 - WALL_RANGE) return float3{ 0.0f, 1 / (-1 - b.pos.y), 0.0f }; // top wall
if (b.pos.y < -1 + WALL_RANGE) return float3{ 0.0f, 1 / (1 - b.pos.y), 0.0f }; // bottom wall
return float3{ 0.0f };
}
__global__ void boidKernel(Boid* boids, size_t n_boids) {
int idx = (blockIdx.x * blockDim.x) + threadIdx.x;
if (idx < n_boids) {
Boid b = boids[idx];
// Find neighbors of boid
int* nb = new int[n_boids];
size_t n_nb = 0;
b_findNeighbors(b, boids, n_boids, nb, n_nb);
// Calculate vectors of influence on boid
float3 a_vec = b_alignment(b, boids, nb, n_nb) * ALIGNMENT_WEIGHT;
float3 c_vec = b_cohesion(b, boids, nb, n_nb) * COHESION_WEIGHT;
float3 s_vec = b_separation(b, boids, nb, n_nb) * SEPARATION_WEIGHT;
float3 w_vec = b_avoidance(b);
b.vel = b.vel + a_vec + c_vec + s_vec + w_vec;
b.vel = b_normalize(b.vel);
b.vel = b.vel * BOID_SPEED;
b.pos = b.pos + b.vel;
delete nb;
float mp = 1 / BOID_SPEED;
b.col = float3{ (b.vel.x * mp + 1) / 2, (b.vel.y * mp + 1) / 2, (b.vel.z * mp + 1) / 2 };
boids[idx] = b;
}
}