generated from streamlit/streamlit-hello
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsegmentation.py
146 lines (117 loc) · 5.51 KB
/
segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import ruptures as rpt
from sklearn.base import BaseEstimator
from sklearn.utils import Bunch
class Segmentation(BaseEstimator):
"""
Segmentation of our multivariate signals, uniform or adaptive (using `ruptures`).
Inputs a list of multivariate signals.
Outputs a list of x-breakpoints splitting the signals into several segments.
Amounts to discretizing our signals along the x-axis.
Parameters
----------
uniform_or_adaptive : {'uniform', 'adaptive'}, default='uniform'
Segmentation type. Possible values:
- "uniform" : uniform segmentation given a number of segments.
- "adaptive" : adaptive segmentation on the mean or slope features,
given a number of segments (breakpoints) or a value of penalty
factor.
mean_or_slope : {None, 'mean', 'slope'}, default=None
Feature on which the adaptive segmentation is done. Possible values:
- None: if the segmentation is uniform.
- 'mean': adaptive segmentation on the mean feature.
- 'slope': adaptive segmentation on the slope feature.
n_segments : int or None, default=8
Number of segments for uniform segmentation or adaptive
segmentation for number of segments (breakpoints).
For adaptive segmentation, if n_segments=None, then adaptive
segmentation based on the penalty is performed.
pen_factor : float or None, default=None
If is Number of segments for uniform segmentation or adaptive
segmentation for number of segments (breakpoints).
For adaptive segmentation, if pen_factor=None, then adaptive
segmentation based on the number of breakpoints (segments) is
performed.
"""
def __init__(
self,
uniform_or_adaptive: str = "uniform",
mean_or_slope: str = None,
n_segments: int = 8,
pen_factor: float = None,
) -> None:
# Unit tests on the parameters:
err_msg = f"Choose 'uniform' or 'adaptive', not {uniform_or_adaptive}."
assert uniform_or_adaptive in ["uniform", "adaptive"], err_msg
if uniform_or_adaptive == "uniform":
err_msg = "For uniform segmentation, specify `n_segments`."
assert n_segments is not None, err_msg
err_msg = "For uniform segmentation, do not specify `pen_factor`."
assert pen_factor is None, err_msg
err_msg = (
"For uniform segmentation, do not specify `mean_or_slope`."
)
assert mean_or_slope is None, err_msg
if uniform_or_adaptive == "adaptive":
err_msg = f"Choose 'mean' or 'slope', not {mean_or_slope}."
assert mean_or_slope in ["mean", "slope"], err_msg
err_msg = "Specify `n_segments` or `pen_factor`."
assert (n_segments is not None) or (pen_factor is not None), err_msg
err_msg = "Specify either `n_segments` or `pen_factor`."
assert (n_segments is None) or (pen_factor is None), err_msg
# Initializing the parameters
self.uniform_or_adaptive = uniform_or_adaptive
self.mean_or_slope = mean_or_slope
self.n_segments = n_segments
self.pen_factor = pen_factor
def fit(self, *args, **kwargs):
return self
def transform(self, list_of_multivariate_signals):
"""Return list of change-points for each multivariate signal."""
multivariate_signal = list_of_multivariate_signals[0]
if multivariate_signal.shape[0] < multivariate_signal.shape[1]:
raise ValueError("The shape of a multivariate signal seems wrong.")
if self.uniform_or_adaptive == "uniform":
list_of_bkps = [
self.transform_uniform(multivariate_signal.shape[0])
for multivariate_signal in list_of_multivariate_signals
]
elif self.uniform_or_adaptive == "adaptive":
list_of_bkps = [
self.transform_adaptive(multivariate_signal)
for multivariate_signal in list_of_multivariate_signals
]
b_transform_segmentation = Bunch(
list_of_multivariate_signals=list_of_multivariate_signals,
list_of_bkps=list_of_bkps,
)
return b_transform_segmentation
def transform_uniform(self, n_samples):
"""Return list of equally spaced change-point indexes."""
bkps = np.linspace(1, n_samples, num=self.n_segments + 1, dtype=int) - 1
bkps = bkps[1:]
bkps[-1] = n_samples
return bkps.flatten().tolist()
def transform_adaptive(self, multivariate_signal):
"""Return change-points indexes for mean or slope shifts."""
if self.mean_or_slope == "slope":
# BottomUp for slope
algo = rpt.BottomUp(model="clinear", jump=1).fit(
multivariate_signal
)
elif self.mean_or_slope == "mean":
# Dynp for mean
algo = rpt.KernelCPD(kernel="linear", jump=1).fit(
multivariate_signal
)
if self.n_segments is not None:
n_bkps = self.n_segments - 1
bkps = algo.predict(n_bkps=n_bkps)
elif self.pen_factor is not None:
pen_value = self.get_penalty_value(multivariate_signal)
bkps = algo.predict(pen=pen_value)
return bkps
def get_penalty_value(self, signal):
"""Return penalty value for a single signal."""
n_samples = signal.shape[0]
return self.pen_factor * np.log(n_samples)