-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpoor_dijkstra_solution.cpp
273 lines (238 loc) · 7.49 KB
/
poor_dijkstra_solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*
g++ poor_dijkstra.cpp -o g
echo "2
4 5 1
0
3 1
3 0" | ./g 2 0
. . * . . .
. . . . . .
. * . . * *
* . . . . .
. * . * . .
* . . * . .
common neighbors of vertices 2 and 0:
reverse shortest path: 0 3 4 has length: 0.783333
*/
#include <vector>
#include <string>
#include <sstream>
#include <cassert>
#include <queue>
#include <iterator>
#include <algorithm>
#include <map>
#include <istream>
#include <ostream>
// Adjacency list graph representation
typedef unsigned vertex_id;
typedef float edge_weight;
typedef std::map<vertex_id, edge_weight> neighbors_t;
typedef std::vector<neighbors_t> graph;
// True iff there is an edge in g from u to v
// Complexity: O( log(|V|) )
inline bool has_edge(graph const& g, int u, int v)
{
return g[u].find(v) != g[u].end();
}
// Add a vertex to g and return its id
// Complexity: O( 1 )
inline vertex_id add_vertex( graph& g )
{
vertex_id v = g.size();
g.resize( v + 1 );
return v;
}
// Return the number of vertices in g
inline std::size_t count_vertices( graph const& g )
{
return g.size();
}
// Return the number of outgoing edges from u in g
inline std::size_t count_adj( graph const& g, vertex_id u )
{
return g[u].size();
}
// Add an edge in g from u to v with weight w
// Complexity: O( log(|V|) )
// Requires: u is a vertex in g, i.e. u < count_vertices( g )
inline void add_edge( graph& g, vertex_id u, vertex_id v, edge_weight w )
{
assert( u < count_vertices( g ) );
g[u].insert( std::make_pair( v, w ) );
}
// A lightweight function object that compares the "first" members of
// any two pairs having the same type.
struct compare1st
{
// Complexity: O( 1 )
template <class Pair>
bool operator()( Pair const& p1, Pair const& p2 )
{
return p1.first < p2.first;
}
};
// A lightweight function object that projects from a pair onto its
// "first" member
struct project1st
{
// Complexity: O( 1 )
template <class Pair>
typename Pair::first_type operator()( Pair const& p )
{
return p.first;
}
};
// Find all vertices reachable in one step from both u and v, and
// write their ids into results. Return the past-the-end position in
// the sequence of written result values.
//
// Complexity: O(|V|)
template <class OutputIterator>
OutputIterator
common_neighbors(
graph const& g, vertex_id u, vertex_id v, OutputIterator results )
{
return std::set_intersection(
g[u].begin(), g[u].end(), g[v].begin(), g[v].end(),
results, compare1st()
);
}
// Compute the shortest path from s to dst, writing the ids of
// vertices on the path (excluding s), in reverse order, into
// out_path. Return a pair consisting of the total path cost and the
// resulting value of out_path.
//
// Pseudocode:
//
// POOR-DIJKSTRA(G, s, w)
// for each vertex u in V
// d[u] := infinity
// p[u] := u
// end for
// INSERT(Q, (s,s,0))
// while (Q != Ø)
// t,u,x := EXTRACT-MIN(Q)
// if u not in S
// d[u] = x // Record minimum distance from s to u
// p[u] = t // Record predecessor of u in shortest path from s
// S := S U { u }
// for each vertex v in Adj[u]
// if v not in S // First path found to v is always shortest
// INSERT(Q, (u, v, x + w(u,v))) // put the path in the queue
// end for
// end while
//
template <class OutputIterator>
std::pair<edge_weight,OutputIterator>
poor_dijkstra( graph const& g, vertex_id s, vertex_id dst, OutputIterator out_path )
{
// This is "S" from the pseudocode
std::vector<bool> visited( count_vertices( g ) );
// shortest distance to each vertex starts at infinity
std::vector<edge_weight> d(
count_vertices( g ), std::numeric_limits<edge_weight>::infinity() );
// Each vertex starts as its own predecessor in shortest path from s
std::vector<vertex_id> p( count_vertices( g ) );
for ( vertex_id u = 0; u < count_vertices( g ); ++u )
p[u] = u;
// An edge is a pair of vertices
typedef std::pair<vertex_id, vertex_id> edge;
// A weighted edge is an edge weight plus an edge
typedef std::pair<edge_weight, edge> weighted_edge;
// Priority queue adapts a vector of weighted_edge and uses
// std::greater to ensure highest-cost paths have the lowest priority.
std::priority_queue<
weighted_edge, std::vector<weighted_edge>, std::greater<weighted_edge>
> q;
q.push( std::make_pair( 0.0, std::make_pair( s, s ) ) );
while ( !q.empty() )
{
// grab the t,u,x triple from the top of the queue
weighted_edge const& tux = q.top();
vertex_id const t = tux.second.first, u = tux.second.second;
edge_weight const x = tux.first;
q.pop();
if ( !visited[u] )
{
d[u] = x;
p[u] = t;
visited[u] = true;
for (neighbors_t::const_iterator adj = g[u].begin(), last = g[u].end();
adj != last;
++adj)
{
if ( !visited[adj->first] )
{
q.push(
weighted_edge( x + adj->second, std::make_pair( u, adj->first )
)
);
}
}
}
}
// Get the total cost of the shortest path
edge_weight w = d[ dst ];
// Walk backwards from dst until we find a self-loop, writing out
// vertices along the way.
while ( p[dst] != dst )
{
*out_path++ = dst;
dst = p[dst];
}
// Return total cost plus new iterator
return std::make_pair( w, out_path );
}
// Read a graph from input in adjacency list form.
void read_adjacency_list( std::istream& input, graph& g )
{
for ( std::string line; std::getline(input, line); )
{
vertex_id src = add_vertex( g );
std::stringstream s(line);
for ( int dst; s >> dst; )
{
// Make up an arbitrary weight
edge_weight w = (1 + count_adj(g, src)) * 1.0 / count_vertices(g);
add_edge( g, src, dst, w );
}
}
}
// Write a g to output in adjacency matrix form.
void write_adjacency_matrix( std::ostream& output, graph const& g )
{
for ( vertex_id u = 0; u < count_vertices( g ); ++u )
{
for ( vertex_id v = 0; v < count_vertices( g ); ++v )
output << (has_edge( g, u, v ) ? "* " : ". ");
output << std::endl;
}
}
#include <iostream>
int main( int argc, char *argv[] )
{
graph g;
read_adjacency_list( std::cin, g );
write_adjacency_matrix( std::cout, g );
if ( argc == 3 )
{
vertex_id u, v;
std::stringstream(argv[1]) >> u;
std::stringstream(argv[2]) >> v;
std::vector<std::pair<vertex_id, edge_weight> > neighbors;
std::cout << "common neighbors of vertices " << u << " and " << v << ": ";
common_neighbors( g, u, v, std::back_inserter( neighbors ) );
std::transform( neighbors.begin(), neighbors.end(),
std::ostream_iterator<vertex_id>( std::cout, " " ),
project1st()
);
std::cout << std::endl;
std::cout << "reverse shortest path: ";
edge_weight w;
w = poor_dijkstra(
g, u, v,
std::ostream_iterator<vertex_id>( std::cout, " " ) ).first;
std::cout << "has length: " << w << std::endl;
}
}