-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathGBSdominantBinDist
108 lines (89 loc) · 3.83 KB
/
GBSdominantBinDist
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# script to read in GBS counts file and perform binary distance
fileLoc <- "Downloads" # "http://gduserv.anu.edu.au/~borevitz/tassel/FOLDERNAME/HapMap/"
fileName <- "HapMap.crespedia.hmc.txt"
fileName <- "HapMap.emarginata.hmc.txt"
fileName <- "HapMap.frog.hmc.txt"
hmc <- read.table(paste(fileLoc,fileName,sep="/"),header=T)
#hmc <- read.table("HapMap.hmc.txt",header=T)
#exclude standard header columns
std.head <- c("rs","HetCount_allele1","HetCount_allele2","Count_allele1","Count_allele2","Frequency")
#setup matrix of sample rows 1x with allele pairs 2x
hmc.allele <- apply(hmc[,!colnames(hmc)%in%std.head],1,function (x) unlist(strsplit(x,split="|",fixed=T)))
sampN <- nrow(hmc.allele)/2
snpN <- ncol(hmc.allele)
#names.list <- list(colnames(hmc[,!colnames(hmc)%in%std.head]),paste(rep(hmc$rs,each=2),1:2,sep="_") )
short.names <- matrix(unlist(strsplit(colnames(hmc[,!colnames(hmc)%in%std.head]),split="_")),nr=6)[1,]
names.list <- list(short.names,paste(rep(hmc$rs,each=2),1:2,sep="_") )
#split genotypes into allele groups 2x samples 1x snps
hmc.allele2 <- matrix(ncol=2*snpN,nrow=sampN,dimnames = names.list)
# fill allele pairs
hmc.allele2[,seq(1,snpN*2,2)] <- as.numeric(hmc.allele[seq(1,sampN*2,2),])
hmc.allele2[,seq(2,snpN*2,2)] <- as.numeric(hmc.allele[seq(2,sampN*2,2),])
#call Presence/Absense
hmc.allele01 <- hmc.allele2
hmc.allele01[hmc.allele2 != 0] <- 1
# look at coverage across samples
reads.samp <- rowSums(hmc.allele2)
alleles.samp <- rowSums(hmc.allele01)
# VISUALLY INSPECT BAD SAMPLES
plot(alleles.samp,reads.samp,xlab = "Alleles Called per Sample", ylab = "Total Reads per Sample")
s.cuts <- 2000 #need to edit this for each experiment
abline(v=s.cuts)
keep <- alleles.samp>s.cuts
table(keep)
hmc01 <- hmc.allele01[keep,]
# look at read coverage
reads.allele <- colSums(hmc.allele2[keep,])
samps.allele <- colSums(hmc01)
plot(samps.allele, reads.allele,xlab = "Samples with Allele Called", ylab = "Total Reads per Allele",
pch=".",ylim=c(0,10000))
quantile(reads.allele,1:20/20)
quantile(samps.allele,1:20/20)
freq.allele <- samps.allele/sum(keep)
# remove rare and repeat alleles
s.cuts <- c(-0.1,0.05,0.95,1.1) # must be observed in 5% of samples but not more that 95%
s.cuts <- c(-0.1,0.1,0.9,1.1) # must be observed in 10% of samples but not more that 90%
abline(v=s.cuts*sum(keep))
keep.allele <- cut(freq.allele,s.cuts,labels = c("rare","mid","repeat"))
table(keep.allele)
table(is.na(keep.allele) ) #verify nothing missing because exactly on threshold
hmc01 <- hmc01[,keep.allele=="mid"] # strange bug, check diminsions
dim(hmc01)
#finally relatedness
# understand 'binary' distance which disregards shared absence
test <- rbind(c(0,0,1,1,1,1,1,1,1,1),
c(0,0,0,1,1,1,1,1,1,1),
c(1,1,1,0,0,0,0,0,0,0),
c(1,1,0,0,0,0,0,0,0,0))
as.matrix(dist(test,method="manhattan"))
as.matrix(dist(test,method="binary"))
plot(hclust(dist(test,method="binary")))
#and read data
dist01 <- dist(hmc01,method="binary")
pdf(file = "Cleome21kdomBinDist.pdf",paper="a4r")
plot(hclust(dist01))
dev.off()
#coloring of trees from Aaron Chuah
colors <- as.numeric(factor(metadata$Site[match(ind.names,metadata$Tube.label)]))
pl.out <- plot(hclust(as.dist(dist01)),cex=0.5)
library(RColorBrewer)
category.vals<<-as.character(levels(as.factor(categories)))
color.pal<<-c('black',brewer.pal(length(category.vals),"Paired"))
colLab <- function(n) { #helper function to color dendrogram labels
if (is.leaf(n)) {
a <- attributes(n)
labCol<-color.pal[1]
for(i in 1:length(category.vals)) {
family<-matrix(unlist(strsplit(a$label,split="-")),nrow=2)[2]
if(!is.na(pmatch(category.vals[i],family))) {
labCol<-color.pal[i+1]
}
}
attr(n, "nodePar") <- c(a$nodePar, lab.col=labCol, pch=NA)
}
n
}
hc <- hclust(as.dist(dist01))
hc <- dendrapply(as.dendrogram(hc,hang=0.1),colLab)
par(cex=0.3)
plot(hc)