This project demonstrates waste detection using a YOLOv8 (You Only Look Once) object detection model. It identifies recyclable, non-recyclable, and hazardous waste items in a webcam stream.
Our datasets used to train: https://universe.roboflow.com/ai-project-i3wje/waste-detection-vqkjo/model/3
Colab: https://colab.research.google.com/drive/1dHv5QUuz2NkkgzeKBoO4DLAhLg9mOrzv?usp=sharing
Live: https://intelligent-waste-segregation-system.streamlit.app
Clone the Repository:
git clone https://github.com/boss4848/waste-detection.git
cd waste-detection
Install Dependencies:
pip install -r requirements.txt
Run the Application
streamlit run app.py
Open your web browser and navigate to the provided URL (usually http://localhost:8501). You will see the Waste Detection app.
app.py
: Main application file containing Streamlit code.helper.py
: Helper functions for waste detection using the YOLO model.settings.py
: Configuration settings, including the path to the YOLO model and waste types.train.py
: To train the model
- RECYCLABLE=['cardboard_box','can','plastic_bottle_cap','plastic_bottle','reuseable_paper']
- NON_RECYCLABLE=['plastic_bag','scrap_paper','stick','plastic_cup','snack_bag','plastic_box','straw','plastic_cup_lid','scrap_plastic','cardboard_bowl','plastic_cultery']
- HAZARDOUS=['battery','chemical_spray_can','chemical_plastic_bottle','chemical_plastic_gallon','light_bulb','paint_bucket']