diff --git a/bw_timex/timex_lca.py b/bw_timex/timex_lca.py index bd464e2..b76092a 100644 --- a/bw_timex/timex_lca.py +++ b/bw_timex/timex_lca.py @@ -1174,7 +1174,7 @@ def create_labelled_dynamic_inventory_dataframe(self) -> pd.DataFrame: df = self.dynamic_inventory_df.copy() df["flow"] = df["flow"].apply(lambda x: bd.get_node(id=x)["name"]) - + activity_name_cache = {} for activity in df["activity"].unique(): @@ -1184,7 +1184,7 @@ def create_labelled_dynamic_inventory_dataframe(self) -> pd.DataFrame: ) df["activity"] = df["activity"].map(activity_name_cache) - + return df def plot_dynamic_inventory(self, bio_flows, cumulative=False) -> None: diff --git a/docs/content/installation.md b/docs/content/installation.md index 8346245..836ccd3 100644 --- a/docs/content/installation.md +++ b/docs/content/installation.md @@ -4,7 +4,7 @@ ```{note} 1) We recommend installation via `conda` or `mamba`. -2) bw_timex depends on Brightway25, and will install bw25-compatible versions of the bw packages. This means that it cannot be added to existing virtual environments that are based on Brightway2, e.g., environments containing [Activity Browser](https://github.com/LCA-ActivityBrowser/activity-browser). Please install bw_timex in a separate environment following the instructions below. +2) bw_timex depends on Brightway25, and will install bw25-compatible versions of the bw packages. This means that it cannot be added to existing virtual environments that are based on Brightway2, e.g., environments containing [Activity Browser](https://github.com/LCA-ActivityBrowser/activity-browser). Please install bw_timex in a separate environment following the instructions below. ``` ## Installing `bw_timex` using `conda` or `mamba` diff --git a/docs/content/theory.md b/docs/content/theory.md index fcee16b..09a5730 100644 --- a/docs/content/theory.md +++ b/docs/content/theory.md @@ -50,7 +50,7 @@ import numpy as np from bw_temporalis import TemporalDistribution two_and_four_years_ahead = TemporalDistribution( - date=np.array([2, 4], dtype="timedelta64[Y]"), + date=np.array([2, 4], dtype="timedelta64[Y]"), amount=np.array([0.3, 0.7]) ) @@ -65,7 +65,7 @@ two_and_four_years_ahead.graph(resolution="Y") The other distribution spreads an amount over the following 4 months, with decreasing shares: ```python spread_over_four_months = TemporalDistribution( - date=np.array([0, 1, 2, 3], dtype="timedelta64[M]"), + date=np.array([0, 1, 2, 3], dtype="timedelta64[M]"), amount=np.array([0.4, 0.3, 0.2, 0.1]) )