forked from JishinMaster/simd_utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneon_mathfun.h
executable file
·493 lines (388 loc) · 14.6 KB
/
neon_mathfun.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/* NEON implementation of sin, cos, exp and log
Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library
*/
/* Copyright (C) 2011 Julien Pommier
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
(this is the zlib license)
*/
// Update : use of FMA
#ifndef INC_SIMD_NEON_MATHFUN_H_
#define INC_SIMD_NEON_MATHFUN_H_
#include <arm_neon.h>
#include "sse2neon_wrapper.h"
#ifndef FMA
/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
static inline v4sf log_ps(v4sf x)
{
v4sf one = vdupq_n_f32(1);
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
v4si ux = vreinterpretq_s32_f32(x);
v4si emm0 = vshrq_n_s32(ux, 23);
/* keep only the fractional part */
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
x = vreinterpretq_f32_s32(ux);
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
v4sf e = vcvtq_f32_s32(emm0);
e = vaddq_f32(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
x = vsubq_f32(x, one);
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
x = vaddq_f32(x, tmp);
v4sf z = vmulq_f32(x, x);
v4sf y = vdupq_n_f32(c_cephes_log_p0);
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
y = vmulq_f32(y, x);
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
y = vmulq_f32(y, x);
y = vmulq_f32(y, z);
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
y = vaddq_f32(y, tmp);
tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
y = vsubq_f32(y, tmp);
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
x = vaddq_f32(x, y);
x = vaddq_f32(x, tmp);
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
return x;
}
/* exp() computed for 4 float at once */
static inline v4sf exp_ps(v4sf x)
{
v4sf tmp, fx;
v4sf one = vdupq_n_f32(1);
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
/* express exp(x) as exp(g + n*log(2)) */
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
/* perform a floorf */
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
/* if greater, substract 1 */
v4su mask = vcgtq_f32(tmp, fx);
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
x = vsubq_f32(x, tmp);
x = vsubq_f32(x, z);
static const float cephes_exp_p[6] = {c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5};
v4sf y = vld1q_dup_f32(cephes_exp_p + 0);
v4sf c1 = vld1q_dup_f32(cephes_exp_p + 1);
v4sf c2 = vld1q_dup_f32(cephes_exp_p + 2);
v4sf c3 = vld1q_dup_f32(cephes_exp_p + 3);
v4sf c4 = vld1q_dup_f32(cephes_exp_p + 4);
v4sf c5 = vld1q_dup_f32(cephes_exp_p + 5);
y = vmulq_f32(y, x);
z = vmulq_f32(x, x);
y = vaddq_f32(y, c1);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c2);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c3);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c4);
y = vmulq_f32(y, x);
y = vaddq_f32(y, c5);
y = vmulq_f32(y, z);
y = vaddq_f32(y, x);
y = vaddq_f32(y, one);
/* build 2^n */
int32x4_t mm;
mm = vcvtq_s32_f32(fx);
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
mm = vshlq_n_s32(mm, 23);
v4sf pow2n = vreinterpretq_f32_s32(mm);
y = vmulq_f32(y, pow2n);
return y;
}
/* evaluation of 4 sines & cosines at once.
The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.
Note also that when you compute sin(x), cos(x) is available at
almost no extra price so both sin_ps and cos_ps make use of
sincos_ps..
*/
static inline void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos)
{ // any x
v4sf xmm1, xmm2, xmm3, y;
v4su emm2;
v4su sign_mask_sin, sign_mask_cos;
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
x = vabsq_f32(x);
/* scale by 4/Pi */
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
/* store the integer part of y in mm0 */
emm2 = vcvtq_u32_f32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
y = vcvtq_f32_u32(emm2);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = vmulq_n_f32(y, c_minus_cephes_DP1);
xmm2 = vmulq_n_f32(y, c_minus_cephes_DP2);
xmm3 = vmulq_n_f32(y, c_minus_cephes_DP3);
x = vaddq_f32(x, xmm1);
x = vaddq_f32(x, xmm2);
x = vaddq_f32(x, xmm3);
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
and the second polynom (Pi/4 <= x <= 0) in y2 */
v4sf z = vmulq_f32(x, x);
v4sf y1, y2;
y1 = vmulq_n_f32(z, c_coscof_p0);
y2 = vmulq_n_f32(z, c_sincof_p0);
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p1));
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p1));
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, z);
y1 = vaddq_f32(y1, vdupq_n_f32(c_coscof_p2));
y2 = vaddq_f32(y2, vdupq_n_f32(c_sincof_p2));
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, z);
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, x);
y1 = vsubq_f32(y1, vmulq_f32(z, vdupq_n_f32(0.5f)));
y2 = vaddq_f32(y2, x);
y1 = vaddq_f32(y1, vdupq_n_f32(1));
/* select the correct result from the two polynoms */
v4sf ys = vbslq_f32(poly_mask, y1, y2);
v4sf yc = vbslq_f32(poly_mask, y2, y1);
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
}
#else /* FMA */
// FMA version
static inline v4sf log_ps(v4sf x)
{
v4sf one = vdupq_n_f32(1);
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
v4si ux = vreinterpretq_s32_f32(x);
v4si emm0 = vshrq_n_s32(ux, 23);
/* keep only the fractional part */
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
x = vreinterpretq_f32_s32(ux);
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
v4sf e = vcvtq_f32_s32(emm0);
e = vaddq_f32(e, one);
/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
x = vsubq_f32(x, one);
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
x = vaddq_f32(x, tmp);
v4sf z = vmulq_f32(x, x);
v4sf y;
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p1), vdupq_n_f32(c_cephes_log_p0), x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p2), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p3), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p4), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p5), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p6), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p7), y, x);
y = vfmaq_f32(vdupq_n_f32(c_cephes_log_p8), y, x);
y = vmulq_f32(y, x);
y = vmulq_f32(y, z);
y = vfmaq_f32(y, e, vdupq_n_f32(c_cephes_log_q1));
y = vfmaq_f32(y, z, vdupq_n_f32(-0.5f));
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
x = vfmaq_f32(x, e, vdupq_n_f32(c_cephes_log_q2));
x = vaddq_f32(x, y);
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
return x;
}
// FMA version
static inline v4sf exp_ps(v4sf x)
{
v4sf tmp, fx;
v4sf one = vdupq_n_f32(1);
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
/* express exp(x) as exp(g + n*log(2)) */
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
/* perform a floorf */
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
/* if greater, substract 1 */
v4su mask = vcgtq_f32(tmp, fx);
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
// tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
// x = vsubq_f32(x, tmp);
x = vfmaq_f32(x, fx, vdupq_n_f32(-c_cephes_exp_C1));
// v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
// x = vsubq_f32(x, z);
x = vfmaq_f32(x, fx, vdupq_n_f32(-c_cephes_exp_C2));
static const float cephes_exp_p[6] = {c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5};
v4sf y = vld1q_dup_f32(cephes_exp_p + 0);
v4sf c1 = vld1q_dup_f32(cephes_exp_p + 1);
v4sf c2 = vld1q_dup_f32(cephes_exp_p + 2);
v4sf c3 = vld1q_dup_f32(cephes_exp_p + 3);
v4sf c4 = vld1q_dup_f32(cephes_exp_p + 4);
v4sf c5 = vld1q_dup_f32(cephes_exp_p + 5);
y = vfmaq_f32(c1, y, x);
y = vfmaq_f32(c2, y, x);
y = vfmaq_f32(c3, y, x);
y = vfmaq_f32(c4, y, x);
y = vfmaq_f32(c5, y, x);
v4sf z = vmulq_f32(x, x);
y = vfmaq_f32(x, y, z);
y = vaddq_f32(y, one);
/* build 2^n */
int32x4_t mm;
mm = vcvtq_s32_f32(fx);
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
mm = vshlq_n_s32(mm, 23);
v4sf pow2n = vreinterpretq_f32_s32(mm);
y = vmulq_f32(y, pow2n);
return y;
}
// FMA version
static inline void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos)
{ // any x
v4sf y;
v4su emm2;
v4su sign_mask_sin, sign_mask_cos;
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
x = vabsq_f32(x);
/* scale by 4/Pi */
y = vmulq_f32(x, vdupq_n_f32(c_cephes_FOPI));
/* store the integer part of y in mm0 */
emm2 = vcvtq_u32_f32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
y = vcvtq_f32_u32(emm2);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2
Both branches will be computed.
*/
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
x = vfmaq_n_f32(x, y, c_minus_cephes_DP1);
x = vfmaq_n_f32(x, y, c_minus_cephes_DP2);
x = vfmaq_n_f32(x, y, c_minus_cephes_DP3);
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
and the second polynom (Pi/4 <= x <= 0) in y2 */
v4sf z = vmulq_f32(x, x);
v4sf y1, y2;
y1 = vfmaq_n_f32(vdupq_n_f32(c_coscof_p1), z, c_coscof_p0);
y2 = vfmaq_n_f32(vdupq_n_f32(c_sincof_p1), z, c_sincof_p0);
y1 = vfmaq_f32(vdupq_n_f32(c_coscof_p2), y1, z);
y2 = vfmaq_f32(vdupq_n_f32(c_sincof_p2), y2, z);
y1 = vmulq_f32(y1, z);
y2 = vmulq_f32(y2, z);
y1 = vmulq_f32(y1, z);
y2 = vfmaq_f32(x, y2, x);
y1 = vfmaq_n_f32(y1, z, -0.5f);
y1 = vaddq_f32(y1, vdupq_n_f32(1));
/* select the correct result from the two polynoms */
v4sf ys = vbslq_f32(poly_mask, y1, y2);
v4sf yc = vbslq_f32(poly_mask, y2, y1);
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
}
#endif /* FMA */
static inline v4sf sin_ps(v4sf x)
{
v4sf ysin, ycos;
sincos_ps(x, &ysin, &ycos);
return ysin;
}
static inline v4sf cos_ps(v4sf x)
{
v4sf ysin, ycos;
sincos_ps(x, &ysin, &ycos);
return ycos;
}
static inline v4sf pow_ps(v4sf y, v4sf x)
{
v4sf logvec = log_ps(y);
v4sf expvec = vmulq_f32(logvec, x);
v4sf ret = exp_ps(expvec);
return ret;
}
static inline v4sf sqrt_ps(v4sf val)
{
#if defined(__aarch64__)
return vsqrtq_f32(val);
#else
v4sf est = vrsqrteq_f32(val);
// Perform 4 iterations
v4sf vec = vmulq_f32(est, est);
vec = vrsqrtsq_f32(val, vec);
est = vmulq_f32(vec, est);
vec = vmulq_f32(est, est);
vec = vrsqrtsq_f32(val, vec);
est = vmulq_f32(vec, est);
vec = vmulq_f32(est, est);
vec = vrsqrtsq_f32(val, vec);
est = vmulq_f32(vec, est);
vec = vmulq_f32(est, est);
vec = vrsqrtsq_f32(val, vec);
est = vmulq_f32(vec, est);
// Multiply by val
est = vmulq_f32(est, val);
return est;
#endif
}
#pragma GCC diagnostic pop
#endif // INC_SIMD_NEON_MATHFUN_H_