-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvmc.py
85 lines (70 loc) · 2.17 KB
/
vmc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy
import math
numsteps=50
storage=[]
def psi(coords,ions):
mod1=numpy.linalg.norm(coords[0])
mod2=numpy.linalg.norm(coords[1])
mod1=mod1**2
mod2=mod2**2
val=math.exp((-0.5)*(mod1 + mod2))
return val
def calcenergy(coords):
mod1=numpy.linalg.norm(coords[0])
mod2=numpy.linalg.norm(coords[1])
mod1=mod1**2
mod2=mod2**2
val=math.exp((-0.5)*(mod1 + mod2))
del1=(coords[0,0] + coords[1,0])*val
del2=(coords[1,0] + coords[1,1])*val
ans=(-(del1+del2)/2)
return ans
def VMC(WF,ions,numSteps):
R=numpy.zeros((2,2),float)
movesAttempted=0.0
movesAccepted=0.0
for step in xrange(0,numSteps):
for ptcl in xrange(0,len(R)):
a=5
accept=0
test=R.copy()
xsubzerowave=psi(R,R)
randomgen=(numpy.random.rand()-0.5)*3
test[ptcl]=numpy.add(test[ptcl],randomgen)
xsub1=psi(test,test) # make your move for particle "ptcl"
prob0=xsubzerowave**2
prob1=xsub1**2
lamp=min(1,(numpy.float64(prob0)/prob1))
dice=numpy.random.rand()
if dice<=lamp: # decide if you accepted or rejected
accept=1
else:
accept=0
movesAttempted+=1
global counter
global storage
if accept==1:
movesAccepted+=1
R = test
answer=calcenergy(R)
storage.append(answer)
# updated movesAttempted and movesAccepted
# here you will compute other things in the next steps
print "Acceptance ratio: ", movesAccepted/movesAttempted
return
def WaveFunction1_test1(wavefunction):
coords=numpy.array([[1.0,0.5,0.3],[-0.2,0.1,-0.1]])
ions=numpy.array([[-0.7,0.0,0.0],[0.7,0.0,0.0]])
if numpy.abs(wavefunction(coords,ions)-0.496585)<1e-5:
return True
else:
return False
#if (WaveFunction1_test1(psi)):
# print 'Wavefunction Test passed'
#else:
# print 'Wavefunction Test Failed'
ions=numpy.array([[0,0],[0,0]])
temp=5
VMC(temp,ions,numsteps)
print numpy.mean(storage)
print numpy.std(storage)