straindesign provides a cli interface to predict gene knockout targets with an heterologous pathway.
Integrate an hard fork from cameo (v0.13.6) named cameobrs
to add features.
conda install -c bioconda straindesign
python -m straindesign simulate-deletion \
[input files]
--input-model-file <SBML file>
--input-pathway-file <SBML file>
--input-medium-file <CSV/TSV file>
[parameters]
--biomass-rxn-id <id reaction, str>
--target-rxn-id <id reaction, str>
--substrate-rxn-id <id reaction, str>
[output file]
--output-file <CSV/TSV file>
python -m straindesign reduce-model \
[input files]
--input-model-file <SBML file>
--input-straindesign-file <CSV file>
and/or
--input-gene-str <id gene, str>
[parameters]
--parameter-strategy-str <yield-max, gene-max, gene-min>
[output file]
--output-file-sbml <SBML file>
You can provide a list of genes to delete in the model or the file produced by the command simulate-deletion
.
If this file is provided, the combination of genes is choosen among three strategies:
- yield-max: genes are sorted by the best yield
- gene-max: the combination of the maximum number of genes
- gene-min: the combination of the minimum number of genes
python -m straindesign analyzing-model \
[input files]
--input-model-file <SBML file>
--input-medium-file <CSV/TSV file>
--input-pathway-file <SBML file>
[parameters]
--biomass-rxn-id <id reaction, str>
--target-rxn-id <id reaction, str>
--substrate-rxn-id <id reaction, str>
[output file]
--output-pareto-png <PNG file>
You can provide an heterologous pathway to implement the metabolic pathway producing the targeted compound represented by the target-rxn-id
, the reaction which produces this compound.
The substrate-rxn-id
argument lets you to choose the main carbon source.
Requires:
- pytest
- pytest-benchmark
python -m pytest