This repository has been archived by the owner on Mar 23, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 145
/
train.py
228 lines (203 loc) · 8.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import json
import shutil
import os
import pickle
from callback import MultipleClassAUROC, MultiGPUModelCheckpoint
from configparser import ConfigParser
from generator import AugmentedImageSequence
from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.optimizers import Adam
from keras.utils import multi_gpu_model
from models.keras import ModelFactory
from utility import get_sample_counts
from weights import get_class_weights
from augmenter import augmenter
def main():
# parser config
config_file = "./config.ini"
cp = ConfigParser()
cp.read(config_file)
# default config
output_dir = cp["DEFAULT"].get("output_dir")
image_source_dir = cp["DEFAULT"].get("image_source_dir")
base_model_name = cp["DEFAULT"].get("base_model_name")
class_names = cp["DEFAULT"].get("class_names").split(",")
# train config
use_base_model_weights = cp["TRAIN"].getboolean("use_base_model_weights")
use_trained_model_weights = cp["TRAIN"].getboolean("use_trained_model_weights")
use_best_weights = cp["TRAIN"].getboolean("use_best_weights")
output_weights_name = cp["TRAIN"].get("output_weights_name")
epochs = cp["TRAIN"].getint("epochs")
batch_size = cp["TRAIN"].getint("batch_size")
initial_learning_rate = cp["TRAIN"].getfloat("initial_learning_rate")
generator_workers = cp["TRAIN"].getint("generator_workers")
image_dimension = cp["TRAIN"].getint("image_dimension")
train_steps = cp["TRAIN"].get("train_steps")
patience_reduce_lr = cp["TRAIN"].getint("patience_reduce_lr")
min_lr = cp["TRAIN"].getfloat("min_lr")
validation_steps = cp["TRAIN"].get("validation_steps")
positive_weights_multiply = cp["TRAIN"].getfloat("positive_weights_multiply")
dataset_csv_dir = cp["TRAIN"].get("dataset_csv_dir")
# if previously trained weights is used, never re-split
if use_trained_model_weights:
# resuming mode
print("** use trained model weights **")
# load training status for resuming
training_stats_file = os.path.join(output_dir, ".training_stats.json")
if os.path.isfile(training_stats_file):
# TODO: add loading previous learning rate?
training_stats = json.load(open(training_stats_file))
else:
training_stats = {}
else:
# start over
training_stats = {}
show_model_summary = cp["TRAIN"].getboolean("show_model_summary")
# end parser config
# check output_dir, create it if not exists
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
running_flag_file = os.path.join(output_dir, ".training.lock")
if os.path.isfile(running_flag_file):
raise RuntimeError("A process is running in this directory!!!")
else:
open(running_flag_file, "a").close()
try:
print(f"backup config file to {output_dir}")
shutil.copy(config_file, os.path.join(output_dir, os.path.split(config_file)[1]))
datasets = ["train", "dev", "test"]
for dataset in datasets:
shutil.copy(os.path.join(dataset_csv_dir, f"{dataset}.csv"), output_dir)
# get train/dev sample counts
train_counts, train_pos_counts = get_sample_counts(output_dir, "train", class_names)
dev_counts, _ = get_sample_counts(output_dir, "dev", class_names)
# compute steps
if train_steps == "auto":
train_steps = int(train_counts / batch_size)
else:
try:
train_steps = int(train_steps)
except ValueError:
raise ValueError(f"""
train_steps: {train_steps} is invalid,
please use 'auto' or integer.
""")
print(f"** train_steps: {train_steps} **")
if validation_steps == "auto":
validation_steps = int(dev_counts / batch_size)
else:
try:
validation_steps = int(validation_steps)
except ValueError:
raise ValueError(f"""
validation_steps: {validation_steps} is invalid,
please use 'auto' or integer.
""")
print(f"** validation_steps: {validation_steps} **")
# compute class weights
print("** compute class weights from training data **")
class_weights = get_class_weights(
train_counts,
train_pos_counts,
multiply=positive_weights_multiply,
)
print("** class_weights **")
print(class_weights)
print("** load model **")
if use_trained_model_weights:
if use_best_weights:
model_weights_file = os.path.join(output_dir, f"best_{output_weights_name}")
else:
model_weights_file = os.path.join(output_dir, output_weights_name)
else:
model_weights_file = None
model_factory = ModelFactory()
model = model_factory.get_model(
class_names,
model_name=base_model_name,
use_base_weights=use_base_model_weights,
weights_path=model_weights_file,
input_shape=(image_dimension, image_dimension, 3))
if show_model_summary:
print(model.summary())
print("** create image generators **")
train_sequence = AugmentedImageSequence(
dataset_csv_file=os.path.join(output_dir, "train.csv"),
class_names=class_names,
source_image_dir=image_source_dir,
batch_size=batch_size,
target_size=(image_dimension, image_dimension),
augmenter=augmenter,
steps=train_steps,
)
validation_sequence = AugmentedImageSequence(
dataset_csv_file=os.path.join(output_dir, "dev.csv"),
class_names=class_names,
source_image_dir=image_source_dir,
batch_size=batch_size,
target_size=(image_dimension, image_dimension),
augmenter=augmenter,
steps=validation_steps,
shuffle_on_epoch_end=False,
)
output_weights_path = os.path.join(output_dir, output_weights_name)
print(f"** set output weights path to: {output_weights_path} **")
print("** check multiple gpu availability **")
gpus = len(os.getenv("CUDA_VISIBLE_DEVICES", "1").split(","))
if gpus > 1:
print(f"** multi_gpu_model is used! gpus={gpus} **")
model_train = multi_gpu_model(model, gpus)
# FIXME: currently (Keras 2.1.2) checkpoint doesn't work with multi_gpu_model
checkpoint = MultiGPUModelCheckpoint(
filepath=output_weights_path,
base_model=model,
)
else:
model_train = model
checkpoint = ModelCheckpoint(
output_weights_path,
save_weights_only=True,
save_best_only=True,
verbose=1,
)
print("** compile model with class weights **")
optimizer = Adam(lr=initial_learning_rate)
model_train.compile(optimizer=optimizer, loss="binary_crossentropy")
auroc = MultipleClassAUROC(
sequence=validation_sequence,
class_names=class_names,
weights_path=output_weights_path,
stats=training_stats,
workers=generator_workers,
)
callbacks = [
checkpoint,
TensorBoard(log_dir=os.path.join(output_dir, "logs"), batch_size=batch_size),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience_reduce_lr,
verbose=1, mode="min", min_lr=min_lr),
auroc,
]
print("** start training **")
history = model_train.fit_generator(
generator=train_sequence,
steps_per_epoch=train_steps,
epochs=epochs,
validation_data=validation_sequence,
validation_steps=validation_steps,
callbacks=callbacks,
class_weight=class_weights,
workers=generator_workers,
shuffle=False,
)
# dump history
print("** dump history **")
with open(os.path.join(output_dir, "history.pkl"), "wb") as f:
pickle.dump({
"history": history.history,
"auroc": auroc.aurocs,
}, f)
print("** done! **")
finally:
os.remove(running_flag_file)
if __name__ == "__main__":
main()