forked from ESCOMP/CLUBB_CESM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNc_Ncn_eqns.F90
953 lines (806 loc) · 36.6 KB
/
Nc_Ncn_eqns.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
!---------------------------------------------------------------------------
! $Id$
!===============================================================================
module Nc_Ncn_eqns
! Description:
! Equations are provided to perform calculations back-and-forth between Nc and
! Ncn, where Nc is cloud droplet concentration and Ncn is simplified cloud
! nuclei concentration. The equation that relates the two is:
!
! Nc = Ncn * H(chi);
!
! where chi is extended liquid water mixing ratio, which is equal to cloud
! water mixing ratio, rc, when both are positive. However, chi is negative in
! subsaturated air.
!
! Equation are provided relating mean cloud droplet concentration (overall),
! Ncm, and/or mean cloud droplet concentration (in-cloud), Nc_in_cloud, to
! mean simplified cloud nuclei concentration, Ncnm.
! Notes:
!
! Meaning of Nc flag combinations:
!
! l_const_Nc_in_cloud:
! When this flag is enabled, cloud droplet concentration (in-cloud) is
! constant (spatially) at a grid level (it is constant over the subgrid
! domain, but could vary over time depending on the value of l_predict_Nc).
! The value of in-cloud Nc does not vary at a grid level. This also means
! that Ncn is constant across the entire grid level. When this flag is turned
! off, both in-cloud Nc and Ncn vary at a grid level.
!
! l_predict_Nc:
! When this flag is enabled, Nc_in_cloud (or alternatively Ncm) is predicted.
! It is advanced every time step by a predictive equation, and can change
! at every time step at a grid level. When this flag is turned off,
! Nc_in_cloud does not change at a grid level over the course of a model run.
!
! 1) l_predict_Nc turned on and l_const_Nc_in_cloud turned on:
! The value of Nc_in_cloud (mean in-cloud Nc) is predicted and can change
! at every timestep at a grid level. However, the value of in-cloud Nc is
! constant (spatially) at a grid level (no subgrid variability).
!
! 2) l_predict_Nc turned on and l_const_Nc_in_cloud turned off:
! The value of Nc_in_cloud (mean in-cloud Nc) is predicted and can change
! at every timestep at a grid level. The value of in-cloud Nc also varies
! (spatially) at a grid level (subgrid variability around mean
! in-cloud Nc).
!
! 3) l_predict_Nc turned off and l_const_Nc_in_cloud turned on:
! The value of Nc_in_cloud (mean in-cloud Nc) is constant over time at a
! grid level. It retains its initial value. Additionally, the value of
! in-cloud Nc is constant (spatially) at a grid level (no subgrid
! variability). This configuration is used most often in idealized cases.
!
! 4) l_predict_Nc turned off and l_const_Nc_in_cloud turned off:
! The value of Nc_in_cloud (mean in-cloud Nc) is constant over time at a
! grid level. It retains its initial value. However, the value of
! in-cloud Nc varies (spatially) at a grid level (subgrid variability
! around mean in-cloud Nc).
!
!
!
! Nc_in_cloud/Nc - Ncn flow chart of CLUBB code:
!
! (Please update when warranted).
!
!
! Ncm/Nc-in-cloud Ncnm/Ncn PDF params.
! --->
! | | Start of CLUBB main time step loop
! | |
! | | advance_clubb_core
! | |
! | |
! | |\
! | | \
! | | (intent in)-------setup_pdf_parameters-------->calc. Ncnm (local)
! | | |
! | | \ /
! | | mu_Ncn_i, sigma_Ncn_i,
! | | corr_xNcn_i
! | | |
! | | \ /
! | | PDF param. arrays:
! | | mu_x_i_n, sigma_x_i_n,
! | | corr_array_i_n
! | | (intent out)
! | | |
! | | |
! | | |
! | | |
! | | |
! | | |
! | |--(intent in)---calc_microphys_scheme_tendcies----(intent in)
! | | |
! | | |
! | | call a microphysics scheme
! | | |
! | | Local micro. scheme-----------Latin Hypercube-----------Upscaled KK
! | | | | |
! | | Ncm/Nc-in-cloud: Populate sample points Use PDF params.
! | | used to find micro. using PDF params (Ncn). of Ncn
! | | tendencies. At every sample point: (mu_Ncn_i, etc.)
! | | | Nc = Ncn * H(chi). to find micro.
! | | | Use sample-point Nc to tendencies.
! | | | find micro. tendencies |
! | | | when calling micro. scheme. |
! | | | | |
! | | hydromet_mc/-----------------hydromet_mc/-------------hydromet_mc
! | | Ncm_mc (intent out) | Ncm_mc (intent out) (intent out)
! | | |
! | | |
! | | |
! | | |
! | | |
! | | |
! | | |
! | | (intent in)
! | | |
! | |--(intent inout)----advance_microphys
! | |
! | |
! | | advance microphysics variables (hydromet, Nc_in_cloud/Ncm) one timestep
! | |
! | | l_predict_Nc = true:
! | | Nc_in_cloud/Ncm necessary for starting
! | | value of Nc_in_cloud/Ncm when advancing
! | | one timestep using predictive equation.
! | |
! | |
! | | End of CLUBB main time step loop
! <---
! References:
!-------------------------------------------------------------------------
implicit none
private ! default scope
public :: Ncnm_to_Nc_in_cloud, &
Nc_in_cloud_to_Ncnm, &
Ncnm_to_Ncm, &
Ncm_to_Ncnm
private :: bivar_NL_chi_Ncn_mean, &
bivar_Ncnm_eqn_comp
contains
!=============================================================================
elemental function Ncnm_to_Nc_in_cloud( mu_chi_1, mu_chi_2, mu_Ncn_1, &
mu_Ncn_2, sigma_chi_1, sigma_chi_2, &
sigma_Ncn_1, sigma_Ncn_2, &
sigma_Ncn_1_n, sigma_Ncn_2_n, &
corr_chi_Ncn_1_n, corr_chi_Ncn_2_n, &
mixt_frac, cloud_frac_1, &
cloud_frac_2 ) &
result( Nc_in_cloud )
! Description:
! The in-cloud mean of cloud droplet concentration is calculated from the
! PDF parameters involving simplified cloud nuclei concentration, Ncn, and
! cloud fraction. At any point, cloud droplet concentration, Nc, is given
! by:
!
! Nc = Ncn * H(chi);
!
! where extended liquid water mixing ratio, chi, is equal to cloud water
! ratio, rc, when positive. When the atmosphere is saturated at this point,
! cloud water is found, and Nc = Ncn. Otherwise, only clear air is found,
! and Nc = 0.
!
! The overall mean of cloud droplet concentration, <Nc>, is calculated from
! the PDF parameters involving Ncn. The in-cloud mean of cloud droplet
! concentration is calculated from <Nc> and cloud fraction.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
cloud_frac_min
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_1, & ! Mean of chi (old s) (1st PDF component) [kg/kg]
mu_chi_2, & ! Mean of chi (old s) (2nd PDF component) [kg/kg]
mu_Ncn_1, & ! Mean of Ncn (1st PDF component) [num/kg]
mu_Ncn_2, & ! Mean of Ncn (2nd PDF component) [num/kg]
sigma_chi_1, & ! Standard deviation of chi (1st PDF comp.) [kg/kg]
sigma_chi_2, & ! Standard deviation of chi (2nd PDF comp.) [kg/kg]
sigma_Ncn_1, & ! Standard deviation of Ncn (1st PDF comp.) [num/kg]
sigma_Ncn_2, & ! Standard deviation of Ncn (2nd PDF comp.) [num/kg]
sigma_Ncn_1_n, & ! Standard deviation of ln Ncn (1st PDF component) [-]
sigma_Ncn_2_n, & ! Standard deviation of ln Ncn (2nd PDF component) [-]
corr_chi_Ncn_1_n, & ! Correlation of chi and ln Ncn (1st PDF comp.) [-]
corr_chi_Ncn_2_n, & ! Correlation of chi and ln Ncn (2nd PDF comp.) [-]
mixt_frac, & ! Mixture fraction [-]
cloud_frac_1, & ! Cloud fraction (1st PDF component) [-]
cloud_frac_2 ! Cloud fraction (2nd PDF component) [-]
! Return Variable
real( kind = core_rknd ) :: &
Nc_in_cloud ! Mean cloud droplet concentration (in-cloud) [num/kg]
! Local Variable
real( kind = core_rknd ) :: &
Ncm, & ! Mean cloud droplet concentration (overall) [num/kg]
cloud_frac ! Cloud fraction [-]
! Calculate overall cloud fraction as calculated by the PDF.
! The variable cloud_frac is not used here because it is altered by factors
! such as the trapezoidal rule calculation.
! Cloud fraction can be recalculated here from cloud_frac_1 and cloud_frac_2
! as long neither of these variables are altered by any factor. They can
! only be calculated from PDF.
cloud_frac = mixt_frac * cloud_frac_1 + ( one - mixt_frac ) * cloud_frac_2
if ( cloud_frac > cloud_frac_min ) then
! There is cloud found at this grid level. Calculate Nc_in_cloud.
Ncm = Ncnm_to_Ncm( mu_chi_1, mu_chi_2, mu_Ncn_1, mu_Ncn_2, &
sigma_chi_1, sigma_chi_2, sigma_Ncn_1, &
sigma_Ncn_2, sigma_Ncn_1_n, sigma_Ncn_2_n, &
corr_chi_Ncn_1_n, corr_chi_Ncn_2_n, mixt_frac )
Nc_in_cloud = Ncm / cloud_frac
else ! cloud_frac <= cloud_frac_min
! This level is entirely clear. Set Nc_in_cloud to <Ncn>.
! Since <Ncn> = mu_Ncn_1 = mu_Ncn_2, use mu_Ncn_1 here.
Nc_in_cloud = mu_Ncn_1
endif
return
end function Ncnm_to_Nc_in_cloud
!=============================================================================
elemental function Nc_in_cloud_to_Ncnm( mu_chi_1, mu_chi_2, sigma_chi_1, &
sigma_chi_2, mixt_frac, Nc_in_cloud, &
cloud_frac_1, cloud_frac_2, &
const_Ncnp2_on_Ncnm2, &
const_corr_chi_Ncn ) &
result( Ncnm )
! Description:
! The overall mean of simplified cloud nuclei concentration, <Ncn>, is
! calculated from the in-cloud mean of cloud droplet concentration, <Nc>,
! cloud fraction, and some of the PDF parameters.
!
! At any point, cloud droplet concentration, Nc, is given by:
!
! Nc = Ncn * H(chi);
!
! where extended liquid water mixing ratio, chi, is equal to cloud water
! ratio, rc, when positive. When the atmosphere is saturated at this point,
! cloud water is found, and Nc = Ncn. Otherwise, only clear air is found,
! and Nc = 0.
!
! The overall mean of cloud droplet concentration, <Nc>, is calculated from
! Nc_in_cloud and cloud fraction. The value of <Ncn> is calculated from
! <Nc> and PDF parameters.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
cloud_frac_min, &
eps
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_1, & ! Mean of chi (old s) (1st PDF component) [kg/kg]
mu_chi_2, & ! Mean of chi (old s) (2nd PDF component) [kg/kg]
sigma_chi_1, & ! Standard deviation of chi (1st PDF component) [kg/kg]
sigma_chi_2, & ! Standard deviation of chi (2nd PDF component) [kg/kg]
mixt_frac ! Mixture fraction [-]
real( kind = core_rknd ), intent(in) :: &
Nc_in_cloud, & ! Mean cloud droplet conc. (in-cloud) [num/kg]
cloud_frac_1, & ! Cloud fraction (1st PDF component) [-]
cloud_frac_2, & ! Cloud fraction (2nd PDF component) [-]
const_Ncnp2_on_Ncnm2, & ! Prescribed ratio of <Ncn'^2> to <Ncn>^2 [-]
const_corr_chi_Ncn ! Prescribed correlation of chi and Ncn [-]
! Return Variable
real( kind = core_rknd ) :: &
Ncnm ! Mean simplified cloud nuclei concentration (overall) [num/kg]
! Local Variable
real( kind = core_rknd ) :: &
Ncm, & ! Mean cloud droplet concentration (overall) [num/kg]
cloud_frac ! Cloud fraction [-]
! Calculate overall cloud fraction as calculated by the PDF.
! The variable cloud_frac is not used here because it is altered by factors
! such as the trapezoidal rule calculation.
! Cloud fraction can be recalculated here from cloud_frac_1 and cloud_frac_2
! as long neither of these variables are altered by any factor. They can
! only be calculated from the PDF.
cloud_frac = mixt_frac * cloud_frac_1 + ( one - mixt_frac ) * cloud_frac_2
if ( cloud_frac > cloud_frac_min &
.and. abs(const_corr_chi_Ncn * const_Ncnp2_on_Ncnm2) > eps ) then
! There is cloud found at this grid level. Additionally, Ncn varies.
! Calculate Nc_in_cloud.
Ncm = Nc_in_cloud * cloud_frac
Ncnm = Ncm_to_Ncnm( mu_chi_1, mu_chi_2, sigma_chi_1, sigma_chi_2, &
mixt_frac, Ncm, const_Ncnp2_on_Ncnm2, &
const_corr_chi_Ncn, Nc_in_cloud )
else ! cloud_frac <= cloud_frac_min .or. const_Ncnp2_on_Ncnm2 = 0
! When Ncn is constant a a grid level, it is equal to Nc_in_cloud.
! Additionally, when a level is entirely clear, <Ncn>, which is based on
! Nc_in_cloud, here, must be set to something. Set <Ncn> to Nc_in_cloud.
Ncnm = Nc_in_cloud
endif
return
end function Nc_in_cloud_to_Ncnm
!=============================================================================
elemental function Ncnm_to_Ncm( mu_chi_1, mu_chi_2, mu_Ncn_1, mu_Ncn_2, &
sigma_chi_1, sigma_chi_2, sigma_Ncn_1, &
sigma_Ncn_2, sigma_Ncn_1_n, sigma_Ncn_2_n, &
corr_chi_Ncn_1_n, corr_chi_Ncn_2_n, &
mixt_frac ) &
result( Ncm )
! Description:
! The overall mean of cloud droplet concentration, <Nc>, is calculated from
! the PDF parameters involving the simplified cloud nuclei concentration,
! Ncn. At any point, cloud droplet concentration, Nc, is given by:
!
! Nc = Ncn * H(chi);
!
! where extended liquid water mixing ratio, chi, is equal to cloud water
! ratio, rc, when positive. When the atmosphere is saturated at this point,
! cloud water is found, and Nc = Ncn. Otherwise, only clear air is found,
! and Nc = 0.
!
! The overall mean of cloud droplet concentration, <Nc>, is found by
! integrating over the PDF of chi and Ncn, such that:
!
! <Nc> = INT(-inf:inf) INT(0:inf) Ncn * H(chi) * P(chi,Ncn) dNcn dchi;
!
! which can also be written as:
!
! <Nc> = SUM(i=1,n) mixt_frac_i
! * INT(-inf:inf) INT(0:inf) Ncn * H(chi) * P_i(chi,Ncn) dNcn dchi;
!
! where n is the number of multivariate joint PDF components, mixt_frac_i is
! the weight of the ith PDF component, and P_i is the functional form of the
! multivariate joint PDF in the ith PDF component.
!
! This equation is rewritten as:
!
! <Nc> = SUM(i=1,n) mixt_frac_i
! * INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi.
!
! When both chi and Ncn vary in the ith PDF component, the integral is
! evaluated and the result is:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * exp{ mu_Ncn_i_n + (1/2) * sigma_Ncn_i_n^2 }
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) );
!
! which can be reduced to:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * mu_Ncn_i
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) ).
!
! When chi is constant, but Ncn varies, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
!
! When chi varies, but Ncn is constant, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = mu_Ncn_i * (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) ).
!
! When both chi and Ncn are constant in the ith PDF component, the integral
! is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one ! Constant(s)
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_1, & ! Mean of chi (old s) (1st PDF component) [kg/kg]
mu_chi_2, & ! Mean of chi (old s) (2nd PDF component) [kg/kg]
mu_Ncn_1, & ! Mean of Ncn (1st PDF component) [num/kg]
mu_Ncn_2, & ! Mean of Ncn (2nd PDF component) [num/kg]
sigma_chi_1, & ! Standard deviation of chi (1st PDF comp.) [kg/kg]
sigma_chi_2, & ! Standard deviation of chi (2nd PDF comp.) [kg/kg]
sigma_Ncn_1, & ! Standard deviation of Ncn (1st PDF comp.) [num/kg]
sigma_Ncn_2, & ! Standard deviation of Ncn (2nd PDF comp.) [num/kg]
sigma_Ncn_1_n, & ! Standard deviation of ln Ncn (1st PDF component) [-]
sigma_Ncn_2_n, & ! Standard deviation of ln Ncn (2nd PDF component) [-]
corr_chi_Ncn_1_n, & ! Correlation of chi and ln Ncn (1st PDF comp.) [-]
corr_chi_Ncn_2_n, & ! Correlation of chi and ln Ncn (2nd PDF comp.) [-]
mixt_frac ! Mixture fraction [-]
! Return Variable
real( kind = core_rknd ) :: &
Ncm ! Mean cloud droplet concentration (overall) [num/kg]
! Calculate mean cloud droplet concentration (overall), <Nc>.
Ncm &
= mixt_frac &
* bivar_NL_chi_Ncn_mean( mu_chi_1, mu_Ncn_1, sigma_chi_1, &
sigma_Ncn_1, sigma_Ncn_1_n, corr_chi_Ncn_1_n ) &
+ ( one - mixt_frac ) &
* bivar_NL_chi_Ncn_mean( mu_chi_2, mu_Ncn_2, sigma_chi_2, &
sigma_Ncn_2, sigma_Ncn_2_n, corr_chi_Ncn_2_n )
return
end function Ncnm_to_Ncm
!=============================================================================
elemental function Ncm_to_Ncnm( mu_chi_1, mu_chi_2, sigma_chi_1, &
sigma_chi_2, mixt_frac, Ncm, &
const_Ncnp2_on_Ncnm2, const_corr_chi_Ncn, &
Ncnm_val_denom_0 ) &
result( Ncnm )
! Description:
! The overall mean of simplified cloud nuclei concentration, <Ncn>, is
! calculated from the overall mean of cloud droplet concentration, <Nc>, and
! some of the PDF parameters.
!
! At any point, cloud droplet concentration, Nc, is given by:
!
! Nc = Ncn * H(chi);
!
! where extended liquid water mixing ratio, chi, is equal to cloud water
! ratio, rc, when positive. When the atmosphere is saturated at this point,
! cloud water is found, and Nc = Ncn. Otherwise, only clear air is found,
! and Nc = 0.
!
! The overall mean of cloud droplet concentration, <Nc>, is found by
! integrating over the PDF of chi and Ncn, such that:
!
! <Nc> = INT(-inf:inf) INT(0:inf) Ncn * H(chi) * P(chi,Ncn) dNcn dchi;
!
! which can also be written as:
!
! <Nc> = SUM(i=1,n) mixt_frac_i
! * INT(-inf:inf) INT(0:inf) Ncn * H(chi) * P_i(chi,Ncn) dNcn dchi;
!
! where n is the number of multivariate joint PDF components, mixt_frac_i is
! the weight of the ith PDF component, and P_i is the functional form of the
! multivariate joint PDF in the ith PDF component.
!
! This equation is rewritten as:
!
! <Nc> = SUM(i=1,n) mixt_frac_i
! * INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi.
!
! When both chi and Ncn vary in the ith PDF component, the integral is
! evaluated and the result is:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * exp{ mu_Ncn_i_n + (1/2) * sigma_Ncn_i_n^2 }
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) );
!
! which can be reduced to:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * mu_Ncn_i
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) ).
!
! When chi is constant, but Ncn varies, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
!
! When chi varies, but Ncn is constant, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = mu_Ncn_i * (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) ).
!
! When both chi and Ncn are constant in the ith PDF component, the integral
! is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
!
!
! Solving for <Ncn>
! =================
!
! The individual marginal for simplified cloud nuclei concentration, Ncn, is
! a single lognormal distribution over the entire horizontal domain. In
! order to accomplish this in a two-component PDF structure, the PDF
! parameters involving Ncn are set equal between the two components. This
! results in:
!
! mu_Ncn_1 = mu_Ncn_2 = mu_Ncn_i = <Ncn>;
! mu_Ncn_1_n = mu_Ncn_2_n = mu_Ncn_i_n;
! sigma_Ncn_1 = sigma_Ncn_2 = sigma_Ncn_i = sqrt( <Ncn'^2> );
! sigma_Ncn_1_n = sigma_Ncn_2_n = sigma_Ncn_i_n;
! rho_chi_Ncn_1 = rho_chi_Ncn_2 = rho_chi_Ncn_i = rho_chi_Ncn; and
! rho_chi_Ncn_1_n = rho_chi_Ncn_2_n = rho_chi_Ncn_i_n.
!
! Additionally, the equation for sigma_Ncn_i_n is:
!
! sigma_Ncn_i_n = sqrt( ln( 1 + ( sigma_Ncn_i^2 / mu_Ncn_i^2 ) ) );
!
! and the equation for rho_chi_Ncn_i_n is:
!
! rho_chi_Ncn_i_n
! = rho_chi_Ncn_i * sqrt( exp{ sigma_Ncn_i_n^2 } - 1 ) / sigma_Ncn_i_n.
!
! The product of rho_chi_Ncn_i_n and sigma_Ncn_i_n is:
!
! rho_chi_Ncn_i_n * sigma_Ncn_i_n
! = rho_chi_Ncn_i * sqrt( exp{ sigma_Ncn_i_n^2 } - 1 ).
!
! After substituting for sigma_Ncn_i_n^2, the equation for the product of
! rho_chi_Ncn_i_n and sigma_Ncn_i_n is:
!
! rho_chi_Ncn_i_n * sigma_Ncn_i_n
! = rho_chi_Ncn_i * sqrt( sigma_Ncn_i^2 / mu_Ncn_i^2 );
!
! which can be rewritten as:
!
! rho_chi_Ncn_i_n * sigma_Ncn_i_n
! = rho_chi_Ncn * sqrt( <Ncn'^2> / <Ncn>^2 ).
!
! Substituting all of this into the equation for <Nc>, the equation for <Nc>
! becomes:
!
! <Nc> = <Ncn>
! * SUM(i=1,n) mixt_frac_i
! ---
! | (1/2) * erfc( - ( 1 / sqrt(2) )
! | * ( ( mu_chi_i / sigma_chi_i )
! | + rho_chi_Ncn * sqrt(<Ncn'^2>/<Ncn>^2) ) );
! | where sigma_chi_i > 0 and <Ncn'^2> > 0;
! |
! * | (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) );
! | where sigma_chi_i > 0 and <Ncn'^2> = 0;
! |
! | 1; where sigma_chi_i = 0 and mu_chi_i > 0;
! |
! | 0; where sigma_chi_i = 0 and mu_chi_i <= 0.
! ---
!
! In order to isolate <Ncn>, the value of <Ncn'^2>/<Ncn>^2 is set to a
! constant value, const_Ncn. The value of this constant does not depend on
! <Ncn>. Likewise, the value of rho_chi_Ncn does not depend on <Ncn>.
! Solving for <Ncn>, the equation becomes:
!
! <Ncn>
! = <Nc> / ( SUM(i=1,n) mixt_frac_i
! ---
! | (1/2) * erfc( - ( 1 / sqrt(2) )
! | * ( ( mu_chi_i / sigma_chi_i )
! | + rho_chi_Ncn * sqrt( const_Ncn ) ) );
! | where sigma_chi_i > 0 and const_Ncn > 0;
! |
! * | (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) );
! | where sigma_chi_i > 0 and const_Ncn = 0;
! |
! | 1; where sigma_chi_i = 0 and mu_chi_i > 0;
! |
! | 0; where sigma_chi_i = 0 and mu_chi_i <= 0 ).
! ---
!
! When the denominator term is 0, there is only clear air. Both the
! numerator (<Nc>) and the denominator have a value of 0, and <Ncn> is set
! to an appropriate value.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
zero
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_1, & ! Mean of chi (old s) (1st PDF component) [kg/kg]
mu_chi_2, & ! Mean of chi (old s) (2nd PDF component) [kg/kg]
sigma_chi_1, & ! Standard deviation of chi (1st PDF component) [kg/kg]
sigma_chi_2, & ! Standard deviation of chi (2nd PDF component) [kg/kg]
mixt_frac ! Mixture fraction [-]
real( kind = core_rknd ), intent(in) :: &
Ncm, & ! Mean cloud droplet conc. (overall) [num/kg]
const_Ncnp2_on_Ncnm2, & ! Prescribed ratio of <Ncn'^2> to <Ncn>^2 [-]
const_corr_chi_Ncn, & ! Prescribed correlation of chi and Ncn [-]
Ncnm_val_denom_0 ! Ncnm value -- denominator in eqn. is 0 [num/kg]
! Return Variable
real( kind = core_rknd ) :: &
Ncnm ! Mean simplified cloud nuclei concentration (overall) [num/kg]
! Local Variable
real( kind = core_rknd ) :: &
denominator_term ! Denominator in the equation for <Ncn> [-]
denominator_term &
= mixt_frac &
* bivar_Ncnm_eqn_comp( mu_chi_1, sigma_chi_1, &
const_Ncnp2_on_Ncnm2, const_corr_chi_Ncn ) &
+ ( one - mixt_frac ) &
* bivar_Ncnm_eqn_comp( mu_chi_2, sigma_chi_2, &
const_Ncnp2_on_Ncnm2, const_corr_chi_Ncn )
if ( denominator_term > zero ) then
Ncnm = Ncm / denominator_term
else ! denominator_term = 0
! When the denominator is 0, it is usually because there is only clear
! air. In that scenario, Ncm should also be 0. Set Ncnm to a value that
! is usual or typical
Ncnm = Ncnm_val_denom_0
endif ! denominator_term > 0
return
end function Ncm_to_Ncnm
!=============================================================================
elemental function bivar_NL_chi_Ncn_mean( mu_chi_i, mu_Ncn_i, sigma_chi_i, &
sigma_Ncn_i, sigma_Ncn_i_n, &
corr_chi_Ncn_i_n )
! Description:
! The double integral over Ncn * H(chi) multiplied by the
! bivariate normal-lognormal joint PDF of chi and Ncn is evaluated. The
! integral is given by:
!
! INT(-inf:inf) INT(0:inf) Ncn * H(chi) * P_i(chi,Ncn) dNcn dchi;
!
! which reduces to:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi;
!
! where the individual marginal distribution of chi is normal in the ith PDF
! component and the individual marginal distribution of Ncn is lognormal in
! the ith PDF component.
!
! When both chi and Ncn vary in the ith PDF component, the integral is
! evaluated and the result is:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * exp{ mu_Ncn_i_n + (1/2) * sigma_Ncn_i_n^2 }
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) );
!
! which can be reduced to:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = (1/2) * mu_Ncn_i
! * erfc( - ( 1 / sqrt(2) ) * ( ( mu_chi_i / sigma_chi_i )
! + rho_chi_Ncn_i_n * sigma_Ncn_i_n ) ).
!
! When chi is constant, but Ncn varies, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
!
! When chi varies, but Ncn is constant, in the ith PDF component, the
! integral is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi
! = mu_Ncn_i * (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) ).
!
! When both chi and Ncn are constant in the ith PDF component, the integral
! is evaluated and results in:
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = mu_Ncn_i;
!
! when mu_chi_i > 0; and
!
! INT(0:inf) INT(0:inf) Ncn * P_i(chi,Ncn) dNcn dchi = 0;
!
! when mu_chi_i <= 0.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
sqrt_2, & ! Constant(s)
one, &
one_half, &
zero, &
chi_tol, &
Ncn_tol
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_i, & ! Mean of chi (old s) (ith PDF component) [kg/kg]
mu_Ncn_i, & ! Mean of Ncn (ith PDF component) [num/kg]
sigma_chi_i, & ! Standard deviation of chi (ith PDF comp.) [kg/kg]
sigma_Ncn_i, & ! Standard deviation of Ncn (ith PDF comp.) [num/kg]
sigma_Ncn_i_n, & ! Standard deviation of ln Ncn (ith PDF component) [-]
corr_chi_Ncn_i_n ! Correlation of chi and ln Ncn (ith PDF comp.) [-]
! Return Variable
real( kind = core_rknd ) :: &
bivar_NL_chi_Ncn_mean
if ( sigma_chi_i <= chi_tol .and. sigma_Ncn_i <= Ncn_tol ) then
! The ith PDF component variances of both chi and Ncn are 0.
if ( mu_chi_i > zero ) then
bivar_NL_chi_Ncn_mean = mu_Ncn_i
else ! mu_chi_i <= 0
bivar_NL_chi_Ncn_mean = zero
endif
elseif ( sigma_chi_i <= chi_tol ) then
! The ith PDF component variance of chi is 0.
if ( mu_chi_i > zero ) then
bivar_NL_chi_Ncn_mean = mu_Ncn_i
else ! mu_chi_i <= 0
bivar_NL_chi_Ncn_mean = zero
endif
elseif ( sigma_Ncn_i <= Ncn_tol ) then
! The ith PDF component variance of Ncn is 0.
bivar_NL_chi_Ncn_mean &
= mu_Ncn_i * one_half * erfc( - ( mu_chi_i / ( sqrt_2 * sigma_chi_i ) ) )
else
! Both chi and Ncn vary in the ith PDF component.
bivar_NL_chi_Ncn_mean &
= one_half * mu_Ncn_i &
* erfc( - ( one / sqrt_2 ) &
* ( ( mu_chi_i / sigma_chi_i ) &
+ corr_chi_Ncn_i_n * sigma_Ncn_i_n ) )
endif
return
end function bivar_NL_chi_Ncn_mean
!=============================================================================
elemental function bivar_Ncnm_eqn_comp( mu_chi_i, sigma_chi_i, &
const_Ncnp2_on_Ncnm2, &
const_corr_chi_Ncn )
! Description:
! When <Ncn> is found based on the value of <Nc>, the following equation is
! used:
!
! <Ncn>
! = <Nc> / ( SUM(i=1,n) mixt_frac_i
! ---
! | (1/2) * erfc( - ( 1 / sqrt(2) )
! | * ( ( mu_chi_i / sigma_chi_i )
! | + rho_chi_Ncn * sqrt( const_Ncn ) ) );
! | where sigma_chi_i > 0 and const_Ncn > 0;
! |
! * | (1/2) * erfc( - ( mu_chi_i / ( sqrt(2) * sigma_chi_i ) ) );
! | where sigma_chi_i > 0 and const_Ncn = 0;
! |
! | 1; where sigma_chi_i = 0 and mu_chi_i > 0;
! |
! | 0; where sigma_chi_i = 0 and mu_chi_i <= 0 ).
! ---
!
! In the above equation, const_Ncn = <Ncn'^2> / <Ncn>^2. It is a constant,
! prescribed parameter. Likewise, rho_chi_Ncn is a parameter that is not
! based on the value of <Ncn>.
!
! When the denominator term is 0, there is only clear air. Both the
! numerator (<Nc>) and the denominator have a value of 0, and <Ncn> is set
! to an appropriate value.
!
! The contribution of the ith PDF component to the denominator term in the
! equation is calculated here.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
sqrt_2, & ! Constant(s)
one, &
one_half, &
zero, &
chi_tol
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
real( kind = core_rknd ), intent(in) :: &
mu_chi_i, & ! Mean of chi (old s) (ith PDF component) [kg/kg]
sigma_chi_i ! Standard deviation of chi (ith PDF component) [kg/kg]
real( kind = core_rknd ), intent(in) :: &
const_Ncnp2_on_Ncnm2, & ! Prescribed ratio of <Ncn'^2> to <Ncn>^2 [-]
const_corr_chi_Ncn ! Prescribed correlation of chi and Ncn [-]
! Return Variable
real( kind = core_rknd ) :: &
bivar_Ncnm_eqn_comp
if ( sigma_chi_i <= chi_tol ) then
! The ith PDF component variances of chi is 0. The value of the ith PDF
! component variance of Ncn does not matter in this scenario.
if ( mu_chi_i > zero ) then
bivar_Ncnm_eqn_comp = one
else ! mu_chi_i <= 0
bivar_Ncnm_eqn_comp = zero
endif
else
! Both chi and Ncn vary in the ith PDF component.
bivar_Ncnm_eqn_comp &
= one_half * erfc( - ( one / sqrt_2 ) * ( ( mu_chi_i / sigma_chi_i ) &
+ const_corr_chi_Ncn * sqrt( const_Ncnp2_on_Ncnm2 ) ) )
endif
return
end function bivar_Ncnm_eqn_comp
!===============================================================================
end module Nc_Ncn_eqns