forked from ESCOMP/CLUBB_CESM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecipitation_fraction.F90
1224 lines (935 loc) · 48.5 KB
/
precipitation_fraction.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!-------------------------------------------------------------------------
! $Id$
!===============================================================================
module precipitation_fraction
! Description:
! Sets overall precipitation fraction as well as the precipitation fraction
! in each PDF component.
implicit none
private
public :: precip_fraction
private :: component_precip_frac_weighted, &
component_precip_frac_specify, &
precip_frac_assert_check
integer, parameter, public :: &
precip_frac_calc_type = 2 ! Option used to calculate component precip_frac
contains
!=============================================================================
subroutine precip_fraction( nz, hydromet, cloud_frac, cloud_frac_1, &
cloud_frac_2, ice_supersat_frac, &
ice_supersat_frac_1, ice_supersat_frac_2, &
mixt_frac, l_stats_samp, &
precip_frac, precip_frac_1, precip_frac_2, &
precip_frac_tol )
! Description:
! Determines (overall) precipitation fraction over the horizontal domain, as
! well as the precipitation fraction within each PDF component, at every
! vertical grid level.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
zero, &
cloud_frac_min, &
fstderr
use parameters_model, only: &
hydromet_dim ! Variable(s)
use array_index, only: &
l_mix_rat_hm, & ! Variable(s)
l_frozen_hm, &
hydromet_tol
use stats_variables, only: &
stats_sfc, & ! Variable(s)
iprecip_frac_tol
use stats_type_utilities, only: &
stat_update_var_pt ! Procedure(s)
use clubb_precision, only: &
core_rknd ! Variable(s)
use error_code, only: &
clubb_at_least_debug_level, & ! Procedure
err_code, & ! Error Indicator
clubb_fatal_error ! Constant
implicit none
! Input Variables
integer, intent(in) :: &
nz ! Number of model vertical grid levels
real( kind = core_rknd ), dimension(nz,hydromet_dim), intent(in) :: &
hydromet ! Mean of hydrometeor, hm (overall) [units vary]
real( kind = core_rknd ), dimension(nz), intent(in) :: &
cloud_frac, & ! Cloud fraction (overall) [-]
cloud_frac_1, & ! Cloud fraction (1st PDF component) [-]
cloud_frac_2, & ! Cloud fraction (2nd PDF component) [-]
ice_supersat_frac, & ! Ice supersaturation fraction (overall) [-]
ice_supersat_frac_1, & ! Ice supersaturation fraction (1st PDF comp.) [-]
ice_supersat_frac_2, & ! Ice supersaturation fraction (2nd PDF comp.) [-]
mixt_frac ! Mixture fraction [-]
logical, intent(in) :: &
l_stats_samp ! Flag to record statistical output.
! Output Variables
real( kind = core_rknd ), dimension(nz), intent(out) :: &
precip_frac, & ! Precipitation fraction (overall) [-]
precip_frac_1, & ! Precipitation fraction (1st PDF component) [-]
precip_frac_2 ! Precipitation fraction (2nd PDF component) [-]
real( kind = core_rknd ), intent(out) :: &
precip_frac_tol ! Minimum precip. frac. when hydromet. are present [-]
! Local Variables
! "Maximum allowable" hydrometeor mixing ratio in-precip component mean.
real( kind = core_rknd ), parameter :: &
max_hm_ip_comp_mean = 0.0025_core_rknd ! [kg/kg]
real( kind = core_rknd ), parameter :: &
precip_frac_tol_coef = 0.1_core_rknd ! Coefficient for precip_frac_tol
integer :: &
k, ivar ! Loop indices
! Initialize the precipitation fraction variables (precip_frac,
! precip_frac_1, and precip_frac_2) to 0.
precip_frac = zero
precip_frac_1 = zero
precip_frac_2 = zero
! Set the minimum allowable precipitation fraction when hydrometeors are
! found at a grid level.
if ( any( l_frozen_hm ) ) then
! Ice microphysics included.
precip_frac_tol &
= max( precip_frac_tol_coef &
* max( maxval( cloud_frac ), maxval( ice_supersat_frac ) ), &
cloud_frac_min )
else
! Warm microphysics.
precip_frac_tol = max( precip_frac_tol_coef * maxval( cloud_frac ), &
cloud_frac_min )
endif
!!! Find overall precipitation fraction.
do k = nz, 1, -1
! The precipitation fraction is the greatest cloud fraction at or above a
! vertical level.
if ( k < nz ) then
if ( any( l_frozen_hm ) ) then
! Ice microphysics included.
precip_frac(k) = max( precip_frac(k+1), cloud_frac(k), &
ice_supersat_frac(k) )
else
! Warm microphysics.
precip_frac(k) = max( precip_frac(k+1), cloud_frac(k) )
endif
else ! k = nz
if ( any( l_frozen_hm ) ) then
! Ice microphysics included.
precip_frac(k) = max( cloud_frac(k), ice_supersat_frac(k) )
else
! Warm microphysics.
precip_frac(k) = cloud_frac(k)
endif
endif
enddo ! Overall precipitation fraction loop: k = nz, 1, -1
!!! Special checks for overall precipitation fraction
do k = 1, nz, 1
if ( any( hydromet(k,:) >= hydromet_tol(:) ) &
.and. precip_frac(k) < precip_frac_tol ) then
! In a scenario where we find any hydrometeor at this grid level, but
! no cloud at or above this grid level, set precipitation fraction to
! a minimum threshold value.
precip_frac(k) = precip_frac_tol
elseif ( all( hydromet(k,:) < hydromet_tol(:) ) ) then
! The means (overall) of every precipitating hydrometeor are all less
! than their respective tolerance amounts. They are all considered to
! have values of 0. There are not any hydrometeor species found at
! this grid level. There is also no cloud at or above this grid
! level, so set precipitation fraction to 0.
precip_frac(k) = zero
endif
enddo ! Special checks for overall precipitation fraction loop: k = 1, nz, 1
!!! Find precipitation fraction within each PDF component.
!
! The overall precipitation fraction, f_p, is given by the equation:
!
! f_p = a * f_p(1) + ( 1 - a ) * f_p(2);
!
! where "a" is the mixture fraction (weight of PDF component 1), f_p(1) is
! the precipitation fraction within PDF component 1, and f_p(2) is the
! precipitation fraction within PDF component 2. Overall precipitation
! fraction is found according the method above, and mixture fraction is
! already determined, leaving f_p(1) and f_p(2) to be solved for. The
! values for f_p(1) and f_p(2) must satisfy the above equation.
if ( precip_frac_calc_type == 1 ) then
! Calculatate precip_frac_1 and precip_frac_2 based on the greatest
! weighted cloud_frac_1 at or above a grid level.
call component_precip_frac_weighted( nz, hydromet, precip_frac, &
cloud_frac_1, cloud_frac_2, &
ice_supersat_frac_1, &
ice_supersat_frac_2, mixt_frac, &
precip_frac_tol, &
precip_frac_1, precip_frac_2 )
elseif ( precip_frac_calc_type == 2 ) then
! Specified method.
call component_precip_frac_specify( nz, hydromet, precip_frac, &
mixt_frac, precip_frac_tol, &
precip_frac_1, precip_frac_2 )
else ! Invalid option selected.
write(fstderr,*) "Invalid option to calculate precip_frac_1 " &
// "and precip_frac_2."
err_code = clubb_fatal_error
return
endif ! precip_frac_calc_type
! Increase Precipiation Fraction under special conditions.
!
! There are scenarios that sometimes occur that require precipitation
! fraction to be boosted. Precipitation fraction is calculated from cloud
! fraction and ice supersaturation fraction. For numerical reasons, CLUBB's
! PDF may become entirely subsaturated with respect to liquid and ice,
! resulting in both a cloud fraction of 0 and an ice supersaturation
! fraction of 0. When this happens, precipitation fraction drops to 0 when
! there aren't any hydrometeors present at that grid level, or to
! precip_frac_tol when there is at least one hydrometeor present at that
! grid level. However, sometimes there are large values of hydrometeors
! found at that grid level. When this occurs, the PDF component in-precip
! mean of a hydrometeor can become ridiculously large. This is because the
! ith PDF component in-precip mean of a hydrometeor, mu_hm_i, is given by
! the equation:
!
! mu_hm_i = hm_i / precip_frac_i;
!
! where hm_i is the overall ith PDF component mean of the hydrometeor, and
! precip_frac_i is the ith PDF component precipitation fraction. When
! precip_frac_i has a value of precip_frac_tol and hm_i is large, mu_hm_i
! can be huge. This can cause enormous microphysical process rates and
! result in numerical instability. It is also very inaccurate.
!
! In order to limit this problem, the ith PDF component precipitation
! fraction is increased in order to decrease mu_hm_i. First, an "upper
! limit" is set for mu_hm_i when the hydrometeor is a mixing ratio. This is
! called max_hm_ip_comp_mean. At every vertical level and for every
! hydrometeor mixing ratio, a check is made to try to prevent mu_hm_i from
! exceeding the "upper limit". The check is:
!
! hm_i / precip_frac_i ( which = mu_hm_i ) > max_hm_ip_comp_mean,
!
! which can be rewritten:
!
! hm_i > precip_frac_i * max_hm_ip_comp_mean.
!
! Since hm_i has not been calculated yet, the assumption for this check is
! that all of the hydrometeor is found in one PDF component, which is the
! worst-case scenario in violating this limit. The check becomes:
!
! <hm> / ( mixt_frac * precip_frac_1 ) > max_hm_ip_comp_mean;
! in PDF comp. 1; and
! <hm> / ( ( 1 - mixt_frac ) * precip_frac_2 ) > max_hm_ip_comp_mean;
! in PDF comp. 2.
!
! These limits can be rewritten as:
!
! <hm> > mixt_frac * precip_frac_1 * max_hm_ip_comp_mean;
! in PDF comp. 1; and
! <hm> > ( 1 - mixt_frac ) * precip_frac_2 * max_hm_ip_comp_mean;
! in PDF comp. 2.
!
! When component precipitation fraction is found to be in excess of the
! limit, precip_frac_i is increased to:
!
! <hm> / ( mixt_frac * max_hm_ip_comp_mean );
! when the limit is exceeded in PDF comp. 1; and
! <hm> / ( ( 1 - mixt_frac ) * max_hm_ip_comp_mean );
! when the limit is exceeded in PDF comp. 2.
!
! Of course, precip_frac_i is not allowed to exceed 1, so when
! <hm> / mixt_frac (or <hm> / ( 1 - mixt_frac )) is already greater than
! max_hm_ip_comp_mean, mu_hm_i will also have to be greater than
! max_hm_ip_comp_mean. However, the value of mu_hm_i is still reduced when
! compared to what it would have been using precip_frac_tol. In the event
! that multiple hydrometeor mixing ratios violate the check, the code is set
! up so that precip_frac_i is increased based on the highest hm_i.
do k = 1, nz, 1
do ivar = 1, hydromet_dim, 1
if ( l_mix_rat_hm(ivar) ) then
! The hydrometeor is a mixing ratio.
if ( hydromet(k,ivar) >= hydromet_tol(ivar) .and. &
hydromet(k,ivar) > mixt_frac(k) * precip_frac_1(k) &
* max_hm_ip_comp_mean ) then
! Increase precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= min( hydromet(k,ivar) &
/ ( mixt_frac(k) * max_hm_ip_comp_mean ), one )
! The value of precip_frac_1 must be at least precip_frac_tol
! when precipitation is found in the 1st PDF component.
precip_frac_1(k) = max( precip_frac_1(k), precip_frac_tol )
endif ! <hm>/(mixt_frac*precip_frac_1) > max_hm_ip_comp_mean
if ( hydromet(k,ivar) >= hydromet_tol(ivar) .and. &
hydromet(k,ivar) > ( one - mixt_frac(k) ) * precip_frac_2(k) &
* max_hm_ip_comp_mean ) then
! Increase precipitation fraction in the 2nd PDF component.
precip_frac_2(k) &
= min( hydromet(k,ivar) &
/ ( ( one - mixt_frac(k) ) * max_hm_ip_comp_mean ), one )
! The value of precip_frac_2 must be at least precip_frac_tol
! when precipitation is found in the 2nd PDF component.
precip_frac_2(k) = max( precip_frac_2(k), precip_frac_tol )
endif ! <hm>/((1-mixt_frac)*precip_frac_2) > max_hm_ip_comp_mean
endif ! l_mix_rat_hm(ivar)
enddo ! ivar = 1, hydromet_dim, 1
enddo ! k = 1, nz, 1
! Recalculate overall precipitation fraction for consistency.
precip_frac = mixt_frac * precip_frac_1 &
+ ( one - mixt_frac ) * precip_frac_2
! Double check that precip_frac_tol <= precip_frac <= 1 when hydrometeors
! are found at a grid level.
! PLEASE DO NOT ALTER precip_frac, precip_frac_1, or precip_frac_2 anymore
! after this point in the code.
do k = 1, nz, 1
if ( any( hydromet(k,:) >= hydromet_tol(:) ) ) then
precip_frac(k) = min( max( precip_frac(k), precip_frac_tol ), one )
endif ! any( hydromet(k,:) >= hydromet_tol(:) )
enddo ! k = 1, nz, 1
! Statistics
if ( l_stats_samp ) then
if ( iprecip_frac_tol > 0 ) then
call stat_update_var_pt( iprecip_frac_tol, 1, precip_frac_tol, &
stats_sfc )
endif ! iprecip_frac_tol
endif ! l_stats_samp
! Assertion check for precip_frac, precip_frac_1, and precip_frac_2.
if ( clubb_at_least_debug_level( 2 ) ) then
call precip_frac_assert_check( nz, hydromet, mixt_frac, precip_frac, &
precip_frac_1, precip_frac_2, &
precip_frac_tol )
endif
return
end subroutine precip_fraction
!=============================================================================
subroutine component_precip_frac_weighted( nz, hydromet, precip_frac, &
cloud_frac_1, cloud_frac_2, &
ice_supersat_frac_1, &
ice_supersat_frac_2, mixt_frac, &
precip_frac_tol, &
precip_frac_1, precip_frac_2 )
! Description:
! Set precipitation fraction in each component of the PDF. The weighted 1st
! PDF component precipitation fraction (weighted_pfrac_1) at a grid level is
! calculated by the greatest value of mixt_frac * cloud_frac_1 at or above
! the relevant grid level. Likewise, the weighted 2nd PDF component
! precipitation fraction (weighted_pfrac_2) at a grid level is calculated by
! the greatest value of ( 1 - mixt_frac ) * cloud_frac_2 at or above the
! relevant grid level.
!
! The fraction weighted_pfrac_1 / ( weighted_pfrac_1 + weighted_pfrac_2 ) is
! the weighted_pfrac_1 fraction. Multiplying this fraction by overall
! precipitation fraction and then dividing by mixt_frac produces the 1st PDF
! component precipitation fraction (precip_frac_1). Then, calculate the 2nd
! PDF component precipitation fraction (precip_frac_2) accordingly.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
zero
use parameters_model, only: &
hydromet_dim ! Variable(s)
use array_index, only: &
l_frozen_hm, & ! Variable(s)
hydromet_tol
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
integer, intent(in) :: &
nz ! Number of model vertical grid levels
real( kind = core_rknd ), dimension(nz,hydromet_dim), intent(in) :: &
hydromet ! Mean of hydrometeor, hm (overall) [units vary]
real( kind = core_rknd ), dimension(nz), intent(in) :: &
precip_frac, & ! Precipitation fraction (overall) [-]
cloud_frac_1, & ! Cloud fraction (1st PDF component) [-]
cloud_frac_2, & ! Cloud fraction (2nd PDF component) [-]
ice_supersat_frac_1, & ! Ice supersaturation fraction (1st PDF comp.) [-]
ice_supersat_frac_2, & ! Ice supersaturation fraction (2nd PDF comp.) [-]
mixt_frac ! Mixture fraction [-]
real( kind = core_rknd ), intent(in) :: &
precip_frac_tol ! Minimum precip. frac. when hydromet. are present [-]
! Output Variables
real( kind = core_rknd ), dimension(nz), intent(out) :: &
precip_frac_1, & ! Precipitation fraction (1st PDF component) [-]
precip_frac_2 ! Precipitation fraction (2nd PDF component) [-]
! Local Variables
real( kind = core_rknd ), dimension(nz) :: &
weighted_pfrac_1, & ! Product of mixt_frac and cloud_frac_1 [-]
weighted_pfrac_2 ! Product of ( 1 - mixt_frac ) and cloud_frac_2 [-]
integer :: k ! Loop index
!!! Find precipitation fraction within PDF component 1.
! The method used to find overall precipitation fraction will also be to
! find precipitation fraction within PDF component 1 and PDF component 2.
! In order to do so, it is assumed (poorly) that PDF component 1 overlaps
! PDF component 1 and that PDF component 2 overlaps PDF component 2 at every
! vertical level in the vertical profile.
do k = nz, 1, -1
! The weighted precipitation fraction in PDF component 1 is the greatest
! value of the product of mixture fraction (mixt_frac) and 1st PDF
! component cloud fraction at or above a vertical level. Likewise, the
! weighted precipitation fraction in PDF component 2 is the greatest
! value of the product of ( 1 - mixt_frac ) and 2nd PDF component cloud
! fraction at or above a vertical level.
if ( k < nz ) then
if ( any( l_frozen_hm ) ) then
! Ice microphysics included.
! Weighted precipitation fraction in PDF component 1.
weighted_pfrac_1(k) &
= max( weighted_pfrac_1(k+1), &
mixt_frac(k) * cloud_frac_1(k), &
mixt_frac(k) * ice_supersat_frac_1(k) )
! Weighted precipitation fraction in PDF component 2.
weighted_pfrac_2(k) &
= max( weighted_pfrac_2(k+1), &
( one - mixt_frac(k) ) * cloud_frac_2(k), &
( one - mixt_frac(k) ) * ice_supersat_frac_2(k) )
else
! Warm microphysics.
! Weighted precipitation fraction in PDF component 1.
weighted_pfrac_1(k) &
= max( weighted_pfrac_1(k+1), &
mixt_frac(k) * cloud_frac_1(k) )
! Weighted precipitation fraction in PDF component 2.
weighted_pfrac_2(k) &
= max( weighted_pfrac_2(k+1), &
( one - mixt_frac(k) ) * cloud_frac_2(k) )
endif
else ! k = nz
if ( any( l_frozen_hm ) ) then
! Ice microphysics included.
! Weighted precipitation fraction in PDF component 1.
weighted_pfrac_1(k) &
= max( mixt_frac(k) * cloud_frac_1(k), &
mixt_frac(k) * ice_supersat_frac_1(k) )
! Weighted precipitation fraction in PDF component 2.
weighted_pfrac_2(k) &
= max( ( one - mixt_frac(k) ) * cloud_frac_2(k), &
( one - mixt_frac(k) ) * ice_supersat_frac_2(k) )
else
! Warm microphysics.
! Weighted precipitation fraction in PDF component 1.
weighted_pfrac_1(k) = mixt_frac(k) * cloud_frac_1(k)
! Weighted precipitation fraction in PDF component 2.
weighted_pfrac_2(k) = ( one - mixt_frac(k) ) * cloud_frac_2(k)
endif
endif
enddo ! Weighted precipitation fraction (1st PDF comp.) loop: k = nz, 1, -1
! Calculate precip_frac_1 and special cases for precip_frac_1.
do k = 1, nz, 1
! Calculate precipitation fraction in the 1st PDF component.
if ( weighted_pfrac_1(k) + weighted_pfrac_2(k) > zero ) then
! Adjust weighted 1st PDF component precipitation fraction by
! multiplying it by a factor. That factor is overall precipitation
! fraction divided by the sum of the weighted 1st PDF component
! precipitation fraction and the weighted 2nd PDF component
! precipitation fraction. The 1st PDF component precipitation
! fraction is then found by dividing the adjusted weighted 1st PDF
! component precipitation fraction by mixture fraction.
precip_frac_1(k) &
= weighted_pfrac_1(k) &
* ( precip_frac(k) &
/ ( weighted_pfrac_1(k) + weighted_pfrac_2(k) ) ) &
/ mixt_frac(k)
else
! Usually, the sum of the weighted 1st PDF component precipitation
! fraction and the 2nd PDF component precipitation fraction go to 0
! when overall precipitation fraction goes to 0. Since 1st PDF
! component weighted precipitation fraction is 0, 1st PDF component
! precipitation fraction also 0.
precip_frac_1(k) = zero
endif
! Special cases for precip_frac_1.
if ( any( hydromet(k,:) >= hydromet_tol(:) ) &
.and. precip_frac_1(k) &
> min( one, precip_frac(k) / mixt_frac(k) ) ) then
! Using the above method, it is possible for precip_frac_1 to be
! greater than 1. For example, the mixture fraction at level k+1 is
! 0.10 and the cloud_frac_1 at level k+1 is 1, resulting in a
! weighted_pfrac_1 of 0.10. This product is greater than the product
! of mixt_frac and cloud_frac_1 at level k. The mixture fraction at
! level k is 0.05, resulting in a precip_frac_1 of 2. The value of
! precip_frac_1 is limited at 1. The leftover precipitation fraction
! (a result of the decreasing weight of PDF component 1 between the
! levels) is applied to PDF component 2.
! Additionally, when weighted_pfrac_1 at level k is greater than
! overall precipitation fraction at level k, the resulting calculation
! of precip_frac_2 at level k will be negative.
precip_frac_1(k) = min( one, precip_frac(k) / mixt_frac(k) )
elseif ( any( hydromet(k,:) >= hydromet_tol(:) ) &
.and. precip_frac_1(k) > zero &
.and. precip_frac_1(k) < precip_frac_tol ) then
! In a scenario where we find precipitation in the 1st PDF component
! (it is allowed to have a value of 0 when all precipitation is found
! in the 2nd PDF component) but it is tiny (less than tolerance
! level), boost 1st PDF component precipitation fraction to tolerance
! level.
precip_frac_1(k) = precip_frac_tol
elseif ( all( hydromet(k,:) < hydromet_tol(:) ) ) then
! The means (overall) of every precipitating hydrometeor are all less
! than their respective tolerance amounts. They are all considered to
! have values of 0. There are not any hydrometeor species found at
! this grid level. There is also no cloud at or above this grid
! level, so set 1st component precipitation fraction to 0.
precip_frac_1(k) = zero
endif
enddo ! Precipitation fraction (1st PDF component) loop: k = 1, nz, 1
!!! Find precipitation fraction within PDF component 2.
! The equation for precipitation fraction within PDF component 2 is:
!
! f_p(2) = ( f_p - a * f_p(1) ) / ( 1 - a );
!
! given the overall precipitation fraction, f_p (calculated above), the
! precipitation fraction within PDF component 1, f_p(1) (calculated above),
! and mixture fraction, a. Any leftover precipitation fraction from
! precip_frac_1 will be included in this calculation of precip_frac_2.
do k = 1, nz, 1
if ( any( hydromet(k,:) >= hydromet_tol(:) ) ) then
! Calculate precipitation fraction in the 2nd PDF component.
precip_frac_2(k) &
= max( ( precip_frac(k) - mixt_frac(k) * precip_frac_1(k) ) &
/ ( one - mixt_frac(k) ), &
zero )
! Special cases for precip_frac_2.
if ( precip_frac_2(k) > one ) then
! Again, it is possible for precip_frac_2 to be greater than 1.
! For example, the mixture fraction at level k+1 is 0.10 and the
! cloud_frac_1 at level k+1 is 1, resulting in a weighted_pfrac_1
! of 0.10. This product is greater than the product of mixt_frac
! and cloud_frac_1 at level k. Additionally, precip_frac (overall)
! is 1 for level k. The mixture fraction at level k is 0.5,
! resulting in a precip_frac_1 of 0.2. Using the above equation,
! precip_frac_2 is calculated to be 1.8. The value of
! precip_frac_2 is limited at 1. The leftover precipitation
! fraction (as a result of the increasing weight of component 1
! between the levels) is applied to PDF component 1.
precip_frac_2(k) = one
! Recalculate precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= ( precip_frac(k) - ( one - mixt_frac(k) ) ) / mixt_frac(k)
! Double check precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
elseif ( precip_frac_1(k) > zero .and. precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp2
precip_frac_2(k) = precip_frac_1(k) * ( ( ( precip_frac(k) / precip_frac_1(k)) &
- mixt_frac(k) ) / ( one - mixt_frac(k) ) )
endif
elseif ( precip_frac_2(k) > zero &
.and. precip_frac_2(k) < precip_frac_tol ) then
! In a scenario where we find precipitation in the 2nd PDF
! component (it is allowed to have a value of 0 when all
! precipitation is found in the 1st PDF component) but it is tiny
! (less than tolerance level), boost 2nd PDF component
! precipitation fraction to tolerance level.
precip_frac_2(k) = precip_frac_tol
! Recalculate precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= ( precip_frac(k) - ( one - mixt_frac(k) ) * precip_frac_2(k) ) &
/ mixt_frac(k)
! Double check precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
elseif ( precip_frac_1(k) > zero .and. precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp2
precip_frac_2(k) = precip_frac_1(k) * ( ( ( precip_frac(k) / precip_frac_1(k)) &
- mixt_frac(k) ) / ( one - mixt_frac(k) ) )
endif
endif ! Special cases for precip_frac_2
else ! all( hydromet(k,:) < hydromet_tol(:) )
! The means (overall) of every precipitating hydrometeor are all less
! than their respective tolerance amounts. They are all considered to
! have values of 0. There are not any hydrometeor species found at
! this grid level. There is also no cloud at or above this grid
! level, so set 2nd component precipitation fraction to 0.
precip_frac_2(k) = zero
endif ! any( hydromet(k,:) > hydromet_tol(:) )
enddo ! Precipitation fraction (2nd PDF component) loop: k = 1, nz, 1
return
end subroutine component_precip_frac_weighted
!=============================================================================
subroutine component_precip_frac_specify( nz, hydromet, precip_frac, &
mixt_frac, precip_frac_tol, &
precip_frac_1, precip_frac_2 )
! Description:
! Calculates the precipitation fraction in each PDF component.
!
! The equation for precipitation fraction is:
!
! f_p = mixt_frac * f_p(1) + ( 1 - mixt_frac ) * f_p(2);
!
! where f_p is overall precipitation fraction, f_p(1) is precipitation
! fraction in the 1st PDF component, f_p(2) is precipitation fraction in the
! 2nd PDF component, and mixt_frac is the mixture fraction. Using this
! method, a new specified parameter is introduced, upsilon, where:
!
! upsilon = mixt_frac * f_p(1) / f_p; and where 0 <= upsilon <= 1.
!
! In other words, upsilon is the ratio of mixt_frac * f_p(1) to f_p. Since
! f_p and mixt_frac are calculated previously, and upsilon is specified,
! f_p(1) can be calculated by:
!
! f_p(1) = upsilon * f_p / mixt_frac;
!
! and has an upper limit of 1. The value of f_p(2) can then be calculated
! by:
!
! f_p(2) = ( f_p - mixt_frac * f_p(1) ) / ( 1 - mixt_frac );
!
! and also has an upper limit of 1. When upsilon = 1, all of the
! precipitation is found in the 1st PDF component (as long as
! f_p <= mixt_frac, otherwise it would cause f_p(1) to be greater than 1).
! When upsilon = 0, all of the precipitation is found in the 2nd PDF
! component (as long as f_p <= 1 - mixt_frac, otherwise it would cause
! f_p(2) to be greater than 1). When upsilon is between 0 and 1,
! precipitation is split between the two PDF components accordingly.
! References:
!-----------------------------------------------------------------------
use constants_clubb, only: &
one, & ! Constant(s)
zero
use parameters_tunable, only: &
upsilon_precip_frac_rat ! Variable(s)
use parameters_model, only: &
hydromet_dim ! Variable(s)
use array_index, only: &
hydromet_tol ! Variable(s)
use clubb_precision, only: &
core_rknd ! Variable(s)
implicit none
! Input Variables
integer, intent(in) :: &
nz ! Number of model vertical grid levels
real( kind = core_rknd ), dimension(nz,hydromet_dim), intent(in) :: &
hydromet ! Mean of hydrometeor, hm (overall) [units vary]
real( kind = core_rknd ), dimension(nz), intent(in) :: &
precip_frac, & ! Precipitation fraction (overall) [-]
mixt_frac ! Mixture fraction [-]
real( kind = core_rknd ), intent(in) :: &
precip_frac_tol ! Minimum precip. frac. when hydromet. are present [-]
! Output Variables
real( kind = core_rknd ), dimension(nz), intent(out) :: &
precip_frac_1, & ! Precipitation fraction (1st PDF component) [-]
precip_frac_2 ! Precipitation fraction (2nd PDF component) [-]
integer :: k ! Loop index.
! Loop over all vertical levels.
do k = 1, nz, 1
if ( any( hydromet(k,:) >= hydromet_tol(:) ) ) then
! There are hydrometeors found at this grid level.
if ( upsilon_precip_frac_rat == one ) then
if ( precip_frac(k) <= mixt_frac(k) ) then
! All the precipitation is found in the 1st PDF component.
precip_frac_1(k) = precip_frac(k) / mixt_frac(k)
precip_frac_2(k) = zero
else ! precip_frac(k) > mixt_frac(k)
! Some precipitation is found in the 2nd PDF component.
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
if ( precip_frac_2(k) > one &
.and. precip_frac(k) == one ) then
! Set precip_frac_2 = 1.
precip_frac_2(k) = one
elseif ( precip_frac_2(k) < precip_frac_tol ) then
! Since precipitation is found in the 2nd PDF component, it
! must have a value of at least precip_frac_tol.
precip_frac_2(k) = precip_frac_tol
! Recalculate precip_frac_1
precip_frac_1(k) &
= ( precip_frac(k) &
- ( one - mixt_frac(k) ) * precip_frac_2(k) ) &
/ mixt_frac(k)
! Double check precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
elseif ( precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp2
precip_frac_2(k) = precip_frac_1(k) * &
( ( ( precip_frac(k) / precip_frac_1(k)) &
- mixt_frac(k) ) / ( one - mixt_frac(k) ) )
endif
endif ! precip_frac_2(k) < precip_frac_tol
endif ! precip_frac(k) <= mixt_frac(k)
elseif ( upsilon_precip_frac_rat == zero ) then
if ( precip_frac(k) <= ( one - mixt_frac(k) ) ) then
! All the precipitation is found in the 2nd PDF component.
precip_frac_1(k) = zero
precip_frac_2(k) = precip_frac(k) / ( one - mixt_frac(k) )
else ! precip_frac(k) > ( 1 - mixt_frac(k) )
! Some precipitation is found in the 1st PDF component.
precip_frac_1(k) = ( precip_frac(k) - ( one - mixt_frac(k) ) ) &
/ mixt_frac(k)
precip_frac_2(k) = one
if ( precip_frac_1(k) > one &
.and. precip_frac(k) == one ) then
! Set precip_frac_1 = 1.
precip_frac_1(k) = one
elseif ( precip_frac_1(k) < precip_frac_tol ) then
! Since precipitation is found in the 1st PDF component, it
! must have a value of at least precip_frac_tol.
precip_frac_1(k) = precip_frac_tol
! Recalculate precip_frac_2
precip_frac_2(k) = ( precip_frac(k) &
- mixt_frac(k) * precip_frac_1(k) ) &
/ ( one - mixt_frac(k) )
! Double check precip_frac_2
if ( precip_frac_2(k) > one ) then
precip_frac_2(k) = one
precip_frac_1(k) = ( ( precip_frac(k) - one ) + mixt_frac(k) ) &
/ mixt_frac(k)
elseif ( precip_frac_2(k) < precip_frac_tol ) then
precip_frac_2(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp1
precip_frac_1(k) = ( precip_frac(k) - precip_frac_2(k) ) / mixt_frac(k) &
+ precip_frac_2(k)
endif
endif ! precip_frac_1(k) < precip_frac_tol
endif ! precip_frac(k) <= ( 1 - mixt_frac(k) )
else ! 0 < upsilon_precip_frac_rat < 1
! Precipitation is found in both PDF components. Each component
! must have a precipitation fraction that is at least
! precip_frac_tol and that does not exceed 1.
! Calculate precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= upsilon_precip_frac_rat * precip_frac(k) / mixt_frac(k)
! Special cases for precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
elseif ( precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
endif
! Calculate precipitation fraction in the 2nd PDF component.
precip_frac_2(k) = ( precip_frac(k) &
- mixt_frac(k) * precip_frac_1(k) ) &
/ ( one - mixt_frac(k) )
! Special case for precip_frac_2
if ( precip_frac_2(k) > one ) then
! Set precip_frac_2 to 1.
precip_frac_2(k) = one
! Recalculate precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= ( precip_frac(k) - ( one - mixt_frac(k) ) ) / mixt_frac(k)
! Double check precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
elseif ( precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp2
precip_frac_2(k) = precip_frac_1(k) * ( ( ( precip_frac(k) / precip_frac_1(k)) &
- mixt_frac(k) ) / ( one - mixt_frac(k) ) )
endif
elseif ( precip_frac_2(k) < precip_frac_tol ) then
! Set precip_frac_2 to precip_frac_tol.
precip_frac_2(k) = precip_frac_tol
! Recalculate precipitation fraction in the 1st PDF component.
precip_frac_1(k) &
= ( precip_frac(k) &
- ( one - mixt_frac(k) ) * precip_frac_2(k) ) &
/ mixt_frac(k)
! Double check precip_frac_1
if ( precip_frac_1(k) > one ) then
precip_frac_1(k) = one
precip_frac_2(k) = ( precip_frac(k) - mixt_frac(k) ) &
/ ( one - mixt_frac(k) )
elseif ( precip_frac_1(k) < precip_frac_tol ) then
precip_frac_1(k) = precip_frac_tol
! fp = a*fp1+(1-a)*fp2 solving for fp2
precip_frac_2(k) = precip_frac_1(k) * ( ( ( precip_frac(k) / precip_frac_1(k)) &
- mixt_frac(k) ) / ( one - mixt_frac(k) ) )
endif
endif ! Special cases for precip_frac_2
endif ! upsilon_precip_frac_rat
else ! all( hydromet(k,:) < hydromet_tol(:) )
! There aren't any hydrometeors found at the grid level.
precip_frac_1(k) = zero
precip_frac_2(k) = zero
endif ! any( hydromet(k,:) >= hydromet_tol(:) )
enddo ! k = 1, nz, 1