-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil.py
67 lines (59 loc) · 2.84 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import torch
import torch.nn as nn
class Binop:
def __init__(self,model):
count_targets = 0
for m in model.modules():
if isinstance(m,nn.Conv2d) or isinstance(m,nn.Linear):
count_targets += 1
self.bin_range = np.linspace(0,count_targets-1,count_targets).astype('int').tolist()
self.num_of_params = len(self.bin_range)
self.saved_params = []
self.target_modules = []
for m in model.modules():
if isinstance(m,nn.Conv2d) or isinstance(m,nn.Linear):
tmp = m.weight.data.clone()
self.saved_params.append(tmp) #tensor
self.target_modules.append(m.weight) #Parameter
def ClampWeights(self):
for index in range(self.num_of_params):
self.target_modules[index].data.clamp(-1.0,1.0,out=self.target_modules[index].data)
def SaveWeights(self):
for index in range(self.num_of_params):
self.saved_params[index].copy_(self.target_modules[index].data)
def BinarizeWeights(self):
for index in range(self.num_of_params):
n = self.target_modules[index].data[0].nelement()
s = self.target_modules[index].data.size()
if len(s) == 4:
alpha = self.target_modules[index].data.norm(1,3,keepdim=True).sum(2,keepdim=True).sum(1,keepdim=True).div(n)
elif len(s) == 2:
alpha = self.target_modules[index].data.norm(1,1,keepdim=True).div(n)
self.target_modules[index].data.sign().mul(alpha.expand(s),out=self.target_modules[index].data)
def Binarization(self):
self.ClampWeights()
self.SaveWeights()
self.BinarizeWeights()
def Restore(self):
for index in range(self.num_of_params):
self.target_modules[index].data.copy_(self.saved_params[index])
def UpdateBinaryGradWeight(self):
for index in range(self.num_of_params):
weight = self.target_modules[index].data
n = weight[0].nelement()
s = weight.size()
if len(s) == 4:
alpha = weight.norm(1,3,keepdim=True).sum(2,keepdim=True).sum(1,keepdim=True).div(n).expand(s)
elif len(s) == 2:
alpha = weight.norm(1,1,keepdim=True).div(n).expand(s)
alpha[weight.le(-1.0)] = 0
alpha[weight.ge(1.0)] = 0
alpha = alpha.mul(self.target_modules[index].grad.data)
add = weight.sign().mul(self.target_modules[index].grad.data)
if len(s) == 4:
add = add.sum(3,keepdim=True).sum(2,keepdim=True).sum(1,keepdim=True).div(n).expand(s)
elif len(s) == 2:
add = add.sum(1,keepdim=True).div(n).expand(s)
add = add.mul(weight.sign())
self.target_modules[index].grad.data = alpha.add(add)