-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheatsheet.tex
686 lines (683 loc) · 21.6 KB
/
cheatsheet.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
\documentclass[a4paper, landscape, 8pt]{extarticle}
\usepackage[margin=0.5cm]{geometry} % Adjust margins as needed
% equations
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amssymb}
\usepackage{siunitx} % scientific notations
\usepackage{cancel}
% equations
\usepackage{multicol} % For multiple columns
\usepackage{enumitem} % For customizing lists
\usepackage[version=4]{mhchem} % chemical equations
\usepackage{graphicx} % adding figures
\usepackage{float} % fitting in multicolumns
\usepackage{parskip} % no paragraph
\usepackage{setspace} % for spacing
\usepackage{vwcol} % column breaks
\usepackage{hyperref}
\usepackage[
backend=biber,
sorting=anyvt,
style = ieee
]{biblatex} % for using references
\addbibresource{course.bib}
% tikz packages
\usepackage{tikz}
\usetikzlibrary{positioning}
% tikz packages
% no page numbering
\pagenumbering{gobble}
% no page numbering
\begin{document}
\textbf{\LARGE ENVE422 - Equation Cheat Sheet\nocite{sanin_clarkson_vesilind_2011,vesilind_hartman_skene_1988,tchobanoglous_stensel_tsuchihashi_burton_2014}} \hfill \today
\hrule
\begin{multicols}{2}
\section*{Introduction}
\subsection*{Quantification}
\begin{figure}[H]
\centering
\includegraphics[scale = 1]{SludgeQuantities.png}
\caption{Flow chart of a sludge generation in a conventional wastewater treatment plant.}
\label{fig:sludge}
\end{figure}
\columnbreak
\begin{multicols}{2}
\doublespacing
\null \vfill
\textbf{\LARGE Mass Balance Approach:}\\
\textbf{\large Parameters}\\
S$_0$ = influent BOD (kg/h)\\
X$_0$ = influent suspended solids (kg/h)\\
h = fraction of BOD not removed in the primary clarifier\\
i = fraction of BOD not removed in the aeration tank\\
X$_f$ = plant effluent suspended solids (kg/h)\\
k = fraction of X$_0$ removed in the primary clarifier\\
j = fraction of solids not destroyed in digester\\
$\Delta$X = net solids produced by biological action (kg/h)\\
Y = Yield = $\Delta$X/$\Delta$S, where:\\
$\Delta$S = hS$_0$ - ihS$_0$
\vfill \null
\columnbreak
\null \vfill
\textbf{\large Typical Values}\\
S$_0$ = 250 * 10$^{-3}$ * Q = kg/h,\\
here 250 mg/L and Q = m$^3$/h\\
X$_0$ = 225 * 10$^{-3}$ * Q = kg/h,\\
here 225 mg/L and Q = m$^3$/h\\
h = 0.7\\
i = 0.1 for well-operated activated sludge\\
i = 0.2 for trickling filters\\
X$_f$ = 20 * 10$^{-3}$ * Q = kg/h,\\
here 20 mg/L and Q = m$^3$/h\\
k = 0.6\\
j = 0.8 (assuming no supernatant withdrawal)\\
Y = 0.5 for activated sludge\\
Y = 0.2 for trickling filters
\vfill \null
\end{multicols}
\end{multicols}
\hrule
\begin{multicols}{4}
\textbf{Definitions}\\
\textbf{Sludge:} Semi-solid material produced by water and wastewater treatment that needs further treatment for disposal into the environment.
\subsection*{Characteristics}
\textbf{\textit{Physical Characteristics}}\\
\textbf{Specific Gravity:} The ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
\[
\text{Specific Gravity} = \frac{{\text{density of substance}}}{{\text{density of reference}}}
\]
Assuming water density as 1000 kg/m$^3$ and sludge S.G. as 1.02, sludge density can be calculated as:
\[
\rho_\text{sludge} = 1000 * 1.02 = 1020 \text{ kg/m}^3
\]
\textbf{Solids concentration:}\\
Conversion from \% (w/w) to mg/L:
\[
\frac{X\text{ kg}}{100\text{ kg}} * \rho_\text{sludge} * \text{C.F.} = \text{mg/L}
\]
Conversion factor (C.F.) value (assuming $\rho_\text{sludge}$ is in kg/m$^3$) from kg to mg and m$^3$ to L: $10^6/10^3$\\
Since there are more than one components in sludges:
\[
\frac{1}{S} = \sum_{i=1}^{n} \frac{W_i}{S_i}
\]
where:\\
$S$ = specific gravity of the sludge,\\
$W_i$ = weight fraction of the $i^\text{th}$ components of sludge,\\
$S_i$ = specific gravity of the $i^\text{th}$ component.\\
\textbf{Solid content and types:}
\[
\text{Total Solids} = \text{Suspended Solids} + \text{Dissolved Solids}
\]
\[
\text{Total Solids} = \text{Volatile Solids} + \text{Fixed Solids}
\]
\[
\text{\% Solids} = 100 - \text{\% Moisture}
\]
\textbf{Settling Characteristics:}
\[
\text{Zone Settling Velocity (ZSV)} \propto \frac{1}{C}
\]
where:\\
$C$ = solid concentration of the sludge.\\
\textbf{Sludge Volume Index (SVI):} A quick test to settleability of a sludge.
\[
\text{SVI} = \frac{V_{30}*1000}{\text{MLSS}}
\]
where:\\
SVI = Sludge Volume Index (volume occupied by 1 gram of solids, mL/g, but unitless),\\
$V_{30}$ = sludge volume settled in 30 minutes, volume unit,\\
1000 = conversion factor (1000 mg/g),\\
MLSS = Mixed Liquor Suspended Solids, concentration unit.
\begin{itemize}
\item $40 < \text{SVI} < 120$ $\Rightarrow$ well-settling
\item $\text{SVI} > 120$ $\Rightarrow$ bulking sludge
\item $\text{SVI} > 150$ $\Rightarrow$ severely bulking sludge
\end{itemize}
Still must be checked in \textbf{extremely low and high concentrations}, since it might be misguiding.
\[
\frac{d\text{N}}{d\text{L}} = \text{AL}^\beta
\]
where:\\
N = density of particles,\\
L = length of particles.\\
log(L) vs. log($\Delta$N/$\Delta$L) graph yields $\beta$ coefficient. The $\beta$ coefficient is closer to 1, it is more uniform in terms of distribution.\\
\textbf{Rheology}\\
\textbf{Conversion:} 1 kg/(m·s) = 0.1 poise\\
\textbf{Newtonian fluids:}
\[
\tau = \mu \frac{du}{dy}
\]
where:\\
$\tau$ = shear stress (N/m$^2$ or Pa),\\
$\mu$ = viscosity (Pa·s or kg/(m·s)),\\
$du/dy$ = shear rate (1/s).\\
\textbf{Bingham plastic fluids:}
\[
\tau = \tau_y + \eta \frac{du}{dy}
\]
where:\\
$\tau$ = shear stress (N/m$^2$ or Pa),\\
$\tau_y$ = yield stress (N/m$^2$ or Pa),\\
$\eta$ = plastic viscosity (Pa·s or kg/(m·s)),\\
$du/dy$ = shear rate (1/s).\\
\textbf{Power law model fluids:}
\begin{equation}
\tau = K \left(\frac{du}{dy}\right)^n
\label{eq:powerlawmodel}
\end{equation}
where:\\
$\tau$ = shear stress (N/m$^2$ or Pa),\\
$K$ = fluid consistency index, analogous to viscosity,\\
n = flow behavior index (n $<$ 1 for \textbf{Pseudoplastic fluids} and n $>$ 1 for \textbf{Dilatant fluids}),\\
$du/dy$ = shear rate (1/s).\\
\textbf{Einstein's Equation of Viscosity:}
\[
\mu = \mu_0 (1+2.5\phi)
\]
where:\\
$\mu_0$ = viscosity of suspending medium,\\
$\phi$ = volume fraction of particles.\\
\textbf{Dewaterability}\\
\textbf{Darcy's Law:}
\[
\frac{dV}{d\theta} = \frac{PAK}{\mu L}
\]
where:\\
$dV/d\theta$ = rate of flow, volume per unit time,\\
$P$ = pressure difference,\\
$A$ = area,\\
$\mu$ = viscosity,\\
$K$ = permeability,\\
$L$ = thickness.\\
For an expression with \textsl{Resistance}:
\[
\frac{dV}{d\theta} = \frac{PA}{\mu LR}
\]
where:\\
$R$ = resistance ($1/K$).\\
\textbf{Considering filter resistance with the cake resistance:}
\begin{equation}
\frac{dV}{d\theta} = \frac{PA}{\mu (LR+R_f)}
\label{eq:dar1}
\end{equation}
where:\\
$R_f$ = resistance of filter medium.\\
The volume of filter cake can be expressed as:
\[
LA = vV
\]
where:\\
$v$ = volume of cake deposited per unit volume of filtrate ($V$),\\
Substituting L in Equation \ref{eq:dar1}:
\[
\frac{dV}{d\theta} = \frac{PA^2}{\mu (RvV+R_fA)}
\]
It is more convenient to express the cake as dry weight of cake deposited per unit volume of filtrate ($w$). $R$ (resistance by a unit volume) is also changed with $r$ (resistance per unit weight).
\[
\frac{dV}{d\theta} = \frac{PA^2}{\mu (rwV+R_fA)}
\]
where:\\
$w$ = weight of dry cake solids per unit volume of filtrate,\\
$r$ = specific resistance per unit weight.
Assuming constant pressure over time:
\begin{equation}
\smallint_{0}^{\theta} d\theta = \smallint_{0}^{V} \left( \frac{\mu rwV}{PA^2}+\frac{\mu R_f}{PA}\right)dV \label{eq:dar2}
\end{equation}
Integrating Equation \ref{eq:dar2}:
\begin{equation}
\frac{\theta}{V} = \frac{\mu rwV}{2 P A^2} + \frac{\mu R_f}{P A} \label{eq:dar3}
\end{equation}
Using Equation \ref{eq:dar3}, experimental data can be obtained by plotting $\theta/V$ and $V$ values on a graph to yield a linear relationship.
\[
y=mx+b
\]
where:\\
$y = \theta/V$\\
$m = \text{ slope } = \mu rw / 2 PA^2$\\
$x = V$\\
$b = \text{ intercept } = \mu R_f / PA$\\
$r$ can be obtained by using slope:
\[
r = \frac{2 P A^2 m}{\mu w}
\]
Check Equation \ref{eq:liqbalance} and Equation \ref{eq:solidsbalance} for the following expression:
\begin{equation}
w = \frac{Q_KC_K}{Q_F} \label{eq:w_1}
\end{equation}
Substituting Equation \ref{eq:liqbalance}:
\[
w = \frac{(Q_0-Q_F)C_K}{Q_F}
\]
Rearranging Equation \ref{eq:solidsbalance} with Equation \ref{eq:liqbalance}:
\begin{equation}
Q_F = \frac{Q_0(C_0-C_K)}{C_F-C_K} \label{eq:w_2}
\end{equation}
For $w$, if the filtrate SS can be assumed negligible (which is reasonable), i.e., $C_F$ = 0, and as Equation \ref{eq:w_2} is substituted into Equation \ref{eq:w_1}, then:
\[
w = \frac{C_KC_0}{(C_K-C_0)}
\]
If in \%:
\[
w = \frac{C_KC_0}{100(C_K-C_0)}
\]
where:\\
$C_K$ = cake solids concentration (\%),\\
$C_0$ = feed solids concentration (\%).\\
\textbf{Capillary Suction Time:}
\[
\chi = (D_2^2 - D_1^2)\left(\frac{\pi d}{ A P }\right)\left(\frac{\mu C}{t}\right)
\]
where:\\
$D_1$ = 1$^\text{st}$ sensor location (diameter, m),\\
$D_2$ = 2$^\text{nd}$ sensor location (diameter, m),\\
$d$ = filter paper depth (thickness, m),\\
$A$ = area of the bottom of the collar (sludge area, m$^2$),\\
$P$ = capillary suction, analogous to head term in Darcy's equation (m),\\
$\mu$ = filtrate viscosity (N·s/m$^2$),\\
$C$ = sludge solids concentration (kg/m$^3$),\\
$t$ = capillary suction time (s),\\
$\chi$ = sludge filterability incorporating permeability (kg$^2$/m$^4$·s$^2$).\\
\textbf{\textit{Chemical Characteristics}}\\
Check Section \textbf{\nameref{Sludge_D_C}}.\\
\textbf{\textit{Biological Characteristics}}\\
\textbf{\% removal to log removal conversion:}
\[
\frac{X}{100} = log\left(\frac{100}{100-X}\right)
\]
\section*{Stabilization}
\textbf{Modified Buswell Equation:}
\begin{multline}
\ce{C_aH_bO_cN_d + $\left(\frac{4a - b - 2c + 3d}{4}\right)$H2O\\ -> $\left(\frac{4a + b - 2c - 3d}{8}\right)$CH4 \\+ $\left(\frac{4a - b + 2c + 3d}{8}\right)$CO2 + $d$NH3} \label{eq:Buswell}
\end{multline}
Equation \ref{eq:Buswell} is used for the determination of \textbf{anaerobic decomposition} of an organic material.\\
\textbf{Net growth of microorganisms:}
\begin{equation}
\frac{dX}{dt} = \text{Ym} - \text{b}X
\label{eq:netgrowth}
\end{equation}
where:\\
$X$ = microorganism concentration (M/L$^3$),\\
$t$ = time (T),\\
Y = growth yield coefficient,\\
b = microorganism decay coefficient (T$^{-1}$),\\
m = rate of waste utilization per unit volume (M/L$^3$/T).\\
\textbf{Monod expression:}
\begin{equation}
\text{m} = \frac{kSX}{K_S+S}
\label{eq:monod}
\end{equation}
where:\\
$S$ = waste concentration (M/L$^3$),\\
$X$ = microorganism concentration (M/L$^3$),\\
$k$ = maximum rate of waste utilization per unit weight of microorganisms (T$^{-1}$),\\
$K_S$ = half velocity coefficient (@ m = $k/2$) (M/L$^3$).\\
Combination of Equation \ref{eq:netgrowth} and \ref{eq:monod} gives:
\[
\mu = \frac{dX/dt}{X} = \text{Y}\frac{kS}{k_S+S} - \text{b} = \frac{1}{\theta_c}
\]
where:\\
$\mu$ = specific growth rate of microorganisms (T$^{-1}$),\\
$\theta_c$ = solids retention time (T).
\[
\theta_c = \frac{\text{weight of active microbial solids in the system}}{\text{quantity of solids withdrawn daily}}
\]
Concentration of MOs in the digester:
\[
X = \frac{\text{Y}(S_0-S)}{1+\text{b}\theta_c}
\]
where:\\
$S_0$ = initial waste concentration (M/L$^3$),\\
$S$ = final waste concentration (M/L$^3$).\\
\textbf{Solids reduction during Aerobic Digestion (Batch):}
\[
\frac{dS}{dt} = -K_dS
\]
where:\\
$S$ = concentration of biodegradable material (M/L$^3$),\\
$K_d$ = decay constant (T$^{-1}$),\\
$t$ = time (T).\\
When integrated:
\[
\smallint_{S_0}^{S_t} \frac{dS}{S} = - K_d\smallint_{0}^{t}dt
\]
\[
S_t = S_0e^{-K_dt}
\]
where:\\
$S_t$ = concentration of biodegradable material at time t (M/L$^3$),\\
$S_0$ = initial concentration of biodegradable material (M/L$^3$).\\
\textbf{Aerobic Digestion (Continuous):}
\[
\text{Input} - \text{Output} - \text{Change in reactor} = \text{Net Change}
\]
Assuming steady state:
\begin{equation}
\frac{Q S_{0}}{V} - \frac{Q S_t}{V} - K_d S_t = \cancelto{0}{\frac{dS}{dt}} \label{eq:ssmassbalance}
\end{equation}
where:\\
$Q$ = flow-rate (L$^3$/T),\\
$V$ = volume of the reactor (L$^3$).
\begin{equation}
\frac{V}{Q} = \theta = \text{Hydraulic Residence Time} \label{eq:hydraulictime}
\end{equation}
Substituting Equation \ref{eq:hydraulictime} into Equation \ref{eq:ssmassbalance}:
\[
\theta = \frac{S_0-S_t}{K_dS_t}
\]
Alternatively, when the nitrification is insignificant, for 38\% reduction in VSS to prevent vector attraction while meeting the pathogen reduction as stated in 40 CFR Part 503:
\[
V =\frac{Q(X_0+YS_0)}{X(K_dP_v+1/\theta_c)}
\]
where:\\
$V$ = volume of digester (L$^3$),\\
$Q$ = flow-rate (L$^3$/T),\\
$Y$ = fraction of influent BOD of raw primary sludge (0 if none),\\
$S_0$ = influent BOD (M/L$^3$),\\
$X$ = digester suspended solids (M/L$^3$),\\
$K_d$ = retention rate constant (T$^{-1}$),\\
$P_v$ = fraction of volatile suspended solids in digester,\\
$\theta_c$ = solids retention time (T) (should be divided if staged).
\section*{Sludge Transport}
\textbf{MAKE SURE YOU HAVE THE RIGHT UNITS!}
\[
\text{Head} = \text{Friction} + \text{Exit} + \text{Minor}
\]
\[
\text{Exit loss} = \frac{v^2}{2g}
\]
\[
\text{Minor loss} = K\frac{v^2}{2g}
\]
where:\\
$v$ = velocity (m/s),\\
$g$ = gravitational acceleration, (m/s$^2$),\\
$K$ = minor loss coefficient.\\
\textbf{Manning Equation:}
\[
v = \frac{k}{n}R^{2/3}S^{1/2}
\]
where:\\
$v$ = average velocity (L/T),\\
$k$ = conversion factor (1.0 for SI, 1.49 for English units),\\
$n$ = Gauckler–Manning coefficient, the reason we have conversion factor (T/L$^{1/3}$),\\
$R$ = hydraulic radius (L),\\
$S$ = hydraulic gradient (L/L).
\[
R = \frac{\text{cross sectional area of flow, m}^2}{\text{wetted perimeter, m}}
\]
\[
S = \frac{\text{head loss, }h_f}{\text{length, }L}
\]
\textbf{Hazen -- Williams Equation:}
\[
v = kCR^{0.63}S^{0.54}
\]
where:\\
$v$ = velocity (in ft/s for US customary units, in m/s for SI units),\\
$k$ = a conversion factor for the unit system (k = 1.32 for US customary units, k = 0.85 for SI units),\\
$C$ = roughness coefficient,\\
$R$ = the hydraulic radius (in ft for US customary units, in m for SI units),\\
$S$ = the slope of the energy line (L/L).\\
\textbf{SI unit versions:}
\[
Q = 0.278CD^{2.63}S^{0.54}
\]
\[
S = \frac{h_f}{L}
\]
\[
h_f = \frac{10.7Q^{1.85}L}{C^{1.85}D^{4.87}}
\]
where:\\
$Q$ = flow-rate (m$^3$/s for SI units),\\
$D$ = full diameter (m).\\
\textbf{Darcy -- Weisbach Equation:}
\[
h_f = f\frac{Lv^2}{2Dg}
\]
\[
h_f = \frac{8fLQ^2}{\pi^2gD^5}
\]
where:\\
$h_f$ = head-loss (m for SI units),\\
$f$ = coefficient of friction,\\
$L$ = length of pipe (m for SI units),\\
$v$ = mean velocity (m$^3$/s for SI units),\\
$D$ = diameter of pipe (m for SI units),\\
$Q$ = flow-rate (m$^3$/s for SI units),\\
$D$ = acceleration due to gravity (m/s$^2$ for SI units).\\
Reynolds number:
\[
R = f\frac{Dv\rho}{\mu}
\]
For laminar flows ($R$ $<$ 2000):
\[
f = \frac{64}{R}
\]
where:\\
$D$ = diameter (called \textit{characteristic length}, it is diameter in pipes),\\
$v$ = velocity (m for SI units),\\
$\rho$ = density of the fluid (kg/m$^3$ for SI units),\\
$\mu$ = dynamic viscosity (Pa·s or kg/(m·s) for SI units).\\
Modified Reynolds number (check Equation \ref{eq:powerlawmodel} for parameters):
\[
R' = \frac{D^nv^{(2-n)}}{K8^{(n-1}}\rho
\]
where:\\
$K$ = fluid consistency index ($\mu$ for Newtonian fluids),\\
$n$ = flow behavior index.\\
For laminar flows:
\[
f = \frac{64K8^{(n-1)}}{D^nv^{(2-n)}\rho}
\]
Check Colebrook - White Equation for turbulent flow or check the Moody diagram and use a correction factor.
\section*{Sludge Thickening}
Flux ($J$) can be expressed as:
\[
v\text{ (L/T)} * C\text{ (M/L}^3\text{)} = J\text{ (M/L}^2/\text{T)}
\]
where:\\
$v$ = velocity,\\
$C$ = concentration.
\[
\text{Area, L}^2 = \frac{Q*C}{J} =\frac{\text{Mass Loading Rate}}{\text{Flux}}
\]
where:\\
$Q$ = flow rate (L$^3$/T).\\
Batch settling flux:
\[
G_b = V_iC_i
\]
Underflow flux:
\[
G_u = uC_i
\]
Total flux:
\[
G_i = uC_i + V_iC_i
\]
where:\\
$G_i$ = total flux,\\
$u$ = underflow sludge removal velocity (L/T),\\
$C_i$ = concentration (M/L$^3$),\\
$V_i$ = batch settling velocity (L/T).\\
This can be used to determine maximum allowable solids loading ($G_L$). Then it can be used to determine the area of a thickener design:
\[
\text{Area} = \frac{C_0Q_0}{G_L}
\]
where:\\
$C_0$ = influent concentration,\\
$Q_0$ = influent flow rate.\\
$C_0$ and $Q_0$ multiplication gives mass loading rate (M/T).\\
\textbf{Surface Loading Rate can be expressed as:}
\[
\text {S.L.R.} \text{ (L}^3/\text{L}^2/\text{T)} = \frac{Q\text{ (L}^3\text{/T)}}{\text{A (L}^2\text{)}}
\]
where:\\
$Q$ = sludge flow rate,\\
$A$ = surface area.\\
\textbf{DAF Design:}
\[
C = f * S_a * P
\]
where:\\
$C$ = concentration of air in water, under pressure,\\
$f$ = fraction of saturation for given $P$,\\
$S_a$ = saturation concentration of air in 1 atm (mL/L),\\
$P$ = pressure in retention tank (atm).\\
Total air into flotation tank:
\[
A_{\text{in}} = (fS_aP)RQ+S_aQ
\]
After the pressure is released:
\[
A_{\text{eq}} = S_a(R+1)Q
\]
Air available for flotation is the difference of those two components:
\begin{equation}
A = A_{\text{in}} - A_{\text{eq}}= S_a(fP-1)RQ \label{eq:air}
\end{equation}
where:\\
$Q$ = feed rate of influent,\\
$R$ = recycle rate as a function of $Q$.\\
Solids feed (a.k.a. mass loading):
\begin{equation}
S = Q*C_0 \label{eq:feed}
\end{equation}
Combining Equation \ref{eq:air} and Equation \ref{eq:feed}:
\[
\frac{A}{S} = \frac{S_a(fP-1)R}{C_0} = \frac{\text{mL air}}{\text{mg solids}}
\]
where:\\
$C_0$ = influent concentration of solids (mg/L),\\
$S_a$ = saturation concentration (mL/L or mg/L),\\
$P$ = pressure in retention tank (atm),\\
$f$ = fraction of saturation for given $P$,\\
$R$ = recycle rate as a function of $Q$.\\
Example at 20\textdegree C:\\
$S_a$ = 24 mg/L or 18.7 mL/L,\\
$P$ = 3 atm,\\
$f$ = 0.5--0.8,\\
$R$ = 1.0 or more typically.
\section*{Sludge Dewatering}
\textbf{Liquid and solids balance:}
\begin{figure}[H]
\centering
\begin{tikzpicture}
% Box
\node[draw, rectangle, minimum width=2cm, minimum height=1cm] (box) at (0, 0) {};
% Arrows
\draw[->] (-2, 0) -- (box.west) node[midway, above] {$Q_0$} node[midway, below] {$C_0$};
\draw[->] (box.east) -- (2, 0) node[midway, above] {$Q_K$} node[midway, below] {$C_K$};
\draw[->] (box.south) -- (0, -1.5) node[midway, left] {$Q_F$} node[midway, right] {$C_F$};
\end{tikzpicture}
\caption{Schematics for solids and fluid balance.}
\label{fig:balance}
\end{figure}
where:\\
$0$ $\Rightarrow$ inflow (influent),\\
$K$ $\Rightarrow$ cake,\\
$F$ $\Rightarrow$ outflow (filtrate/centrate).
\begin{equation}
Q_0 = Q_F + Q_K
\label{eq:liqbalance}
\end{equation}
\begin{equation}
Q_0C_0 = Q_FC_F + Q_KC_K
\label{eq:solidsbalance}
\end{equation}
Equation \ref{eq:liqbalance} and Equation \ref{eq:solidsbalance} yields:
\begin{equation}
Q_K=\frac{Q_0(C_0-C_F)}{(C_K-C_F)}
\label{eq:balance}
\end{equation}
\% Recovery:
\[
\%R =\frac{\text{mass of dry solids as cake}}{\text{mass of dry feed solids}}*100
\]
\begin{equation}
\%R =\frac{C_KQ_K}{C_0Q_0}*100
\label{eq:recovery}
\end{equation}
Substituting Equation \ref{eq:balance} into Equation \ref{eq:recovery}:
\[
\%R =\frac{C_K(C_0-C_F)}{C_0(C_K-C_F)}*100
\]
where:\\
$Q_0$ = feed flow rate,\\
$C_0$ = feed solids concentration,\\
$Q_K$ = filter cake flow,\\
$C_K$ = filter cake solids concentration,\\
$Q_F$ = the filtrate flow,\\
$C_F$ = the solids concentration in the filtrate.
\section*{Chemical Sludges}
\textbf{Alum sludge:}\\
\ce{Al^3+ + PO_4^3- \rightleftarrows AlPO4} $\downarrow$\\
\ce{Al^3+ + 3OH- \rightleftarrows Al(OH)3} $\downarrow$\\
\textbf{Recovery:}\\
\ce{Al(OH)3 + 3H+ \rightarrow Al^3+ + H2O}\\
\textbf{Ferric sludge:}\\
\ce{Fe^3+ + PO_4^3- \rightleftarrows FePO4} $\downarrow$\\
\ce{Fe^3+ + 3OH- \rightleftarrows Fe(OH)3} $\downarrow$\\
\textbf{Lime sludge:}\\
\ce{Ca5(OH)(PO4)3} = calcium hydroxylapatite\\
\textbf{Quicklime to Slacked/Hydrated lime:}\\
\ce{CaO + H2O \rightleftarrows Ca(OH)2}
\section*{Sludge Drying and Combustion} \label{Sludge_D_C}
\textbf{H.C.V. or H.H.V. calculations:}
\[
\text{kJ/kg} = 33800 C + 144000 (H - O/8) + 9270 S
\]
\[
\text{BTU/lb} = 14600 C + 62000 (H - O/8) + 4050 S
\]
\[
\text{kcal/kg} = 8080 C + 34500 (H - O/8) + 2240 S
\]
where:\\
C, H, O, S are the weight fractions of corresponding elements.\\
\textbf{Conversions:}
\[
\text{BTU/lb} = \frac{\text{kJ/kg}}{2.326}
\]
\[
\text{kcal/kg} = \frac{\text{kJ/kg}}{4.184}
\]
\[
\text{kcal/kg} = \frac{\text{BTU/lb}}{1.799}
\]
Some empirical formulas can be used to determine the heat value as well:
\[
Q_H = A\left[\frac{100C_V}{100-D}\right] - B\left[\frac{100-D}{100}\right]
\]
or such as,
\[
\text{BTU/lb} = 122C_V - 660
\]
where:\\
$Q_H$ = heat value (BTU/lb),\\
$C_V$ = volatile solids (\%),\\
$D$ = dosage of inorganic chemicals used in dewatering as \% weight of sludge,\\
$A$ = empirical constant (107 for Activated Sludge, 131 for Raw Primary Sludge),\\
$B$ = empirical constant (5 for Activated Sludge, 10 for Raw Primary Sludge).\\
Real heat value calculation:
\[
\text{Real Heat Value} = \text{Heat Value} * f_S * f_V
\]
where:\\
$f_S$ = solid fraction ($\approx$ 0.2--0.25),\\
$f_V$ = volatile fraction ($\approx$ 0.7).
\section*{Regulations of Sludge}
\textbf{\textit{Turkish Regulations}}\\
Su Kirliliği Kontrol Yönetmeliği (Water Pollution Control Regulations)\\
Atıksu Arıtma Tesisleri Teknik Usuller Tebliği (Technical Aspects Bulletin)\\
Atıkların Düzenli Depolanmasına Dair Yönetmelik (Regulation on the Landfilling of Wastes)\\
Atıkların Yakılmasına Dair Yönetmelik (Regulation on the Combustion of Wastes)\\
Evsel ve Kentsel Arıtma Çamurlarının Toprakta Kullanılmasına Dair Yönetmelik (Regulation on the Use of Municipal and Urban Sludges on Land)\\
\textbf{\textit{US Regulations}}\\
Regulated under Federal Regulation in 40 CFR Part 503 Standards for the Use or Disposal of Biosolids.
\end{multicols}
\printbibliography
\end{document}