forked from Newcomer520/tf-dagmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
75 lines (64 loc) · 3.16 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import glob
import tensorflow as tf
import pandas as pd
from config import get_region
from models.dagmm import dagmm
from models.baseline_ae import baseline_ae_model
import datetime
from utils import feed_image_to_tensors
def model_for_inference(pattern_name, encoded_dims=2, mixtures=5, latent_dims=2, baseline=False):
regions = get_region(pattern_name)
region_tensors = {}
for region_name in regions:
w = regions[region_name]['width']
h = regions[region_name]['height']
filters = regions[region_name]['filters']
scope = regions[region_name]['scope']
reuse = regions[region_name]['reuse']
region = regions[region_name]['region']
tensors = tf.placeholder(tf.float32, (None, h, w, 3))
region_tensors[region_name] = {'filters': filters, 'tensors': tensors, 'reuse': reuse, 'width': w, 'height': h, 'region': region, 'scope': scope}
if baseline:
print('use baseline model')
rel_dist, z, squared_dist = baseline_ae_model(region_tensors, is_training=tf.constant(False, name='is_training'), encoded_dims=encoded_dims)
return region_tensors, rel_dist, tf.concat([z, tf.reshape(rel_dist,(-1, 1))], axis=1)
else:
energy_tensors, z, *rest = dagmm(region_tensors, is_training=tf.constant(False), encoded_dims=encoded_dims, mixtures=mixtures, latent_dims=latent_dims)
return region_tensors, energy_tensors, z
def inference(folder,
region_tensors,
energy_tensors,
z,
checkpoint='/home/i-lun/works/smt/tmp/checkpoint-8400',
batch_size=24,
ext='png'):
image_files = glob.glob(os.path.join(folder, '*.{}'.format(ext)))
columns = ['file', 'energy']
results = {'file': list(map(lambda f: os.path.basename(f), image_files)), 'energy': []}
energies = results['energy']
for z_idx in range(z.get_shape()[1]):
results['z_{}'.format(z_idx)] = []
columns.append('z_{}'.format(z_idx))
checkpoint_saver = tf.train.Saver()
with tf.Session() as sess:
checkpoint_saver.restore(sess, checkpoint)
current_batch = {}
for region_name in region_tensors:
tensors = region_tensors[region_name]['tensors']
current_batch[tensors] = []
starttime = datetime.datetime.now()
for idx, image_file in enumerate(image_files):
feed_image_to_tensors(image_file, region_tensors, current_batch)
if idx % batch_size == batch_size - 1 or idx == len(image_files) - 1:
es, zs = sess.run([energy_tensors, z], feed_dict=current_batch)
for region_name in region_tensors:
tensors = region_tensors[region_name]['tensors']
current_batch[tensors] = []
for z_idx in range(z.get_shape()[1]):
results['z_{}'.format(z_idx)].extend(zs[:, z_idx])
energies.extend(es)
endtime = datetime.datetime.now()
t = endtime - starttime
print('required inference time for {} images: {} sec'.format(len(image_files), t))
return pd.DataFrame(results).reindex(columns=columns).sort_values(by='energy')