forked from Newcomer520/tf-dagmm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
292 lines (240 loc) · 12.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
"""
DEEP AUTOENCODING GAUSSIAN MIXTURE MODEL FOR UNSUPERVISED ANOMALY DETECTION
paper: https://openreview.net/forum?id=BJJLHbb0-
"""
import tensorflow as tf
import os
from config import get_region
from models.dagmm import dagmm
from models.utils import count_trainable_parameters
from utils import find_region
import re
import glob
from functools import partial
from argparse import ArgumentParser
from models.baseline_ae import baseline_ae_model
import json
def train(args):
os.makedirs(args.logdir, exist_ok=True)
with open(os.path.join(args.logdir, 'config.json'), 'w') as fp:
json.dump(args.__dict__, fp, sort_keys=True, indent=4)
best_folder = os.path.join(args.logdir, 'best')
best_run = -1
best_loss = 1e12
os.makedirs(best_folder, exist_ok=True)
last_checkpoint = tf.train.latest_checkpoint(args.logdir)
if last_checkpoint is not None:
global_step = int(re.search('-([0-9]+)$', last_checkpoint).groups()[0]) + 1
else:
global_step = 1
regions = get_region(args.pattern)
batch_tensors, handle, training_iterator, validation_iterator = make_dataset(regions, args.train_folder, args.validation_folder, batch_size=args.batch_size, ext=args.ext)
is_training_placeholder = tf.placeholder_with_default(tf.constant(True), [], name='is_training')
region_tensors = {}
for region_name in regions:
images = batch_tensors[region_name]
filters = regions[region_name]['filters']
scope = regions[region_name]['scope']
reuse = regions[region_name]['reuse']
region_tensors[region_name] = {'tensors': images, 'filters': filters, 'reuse': reuse, 'scope': scope}
*rest, loss, loss_reconstruction, es_mean, loss_sigmas_diag = dagmm(region_tensors, is_training_placeholder, encoded_dims=args.encoded_dims, mixtures=args.mixtures,
lambda_1=args.lambda1, lambda_2=args.lambda2, latent_dims=args.latent_dims)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
tf.summary.scalar('loss', loss)
tf.summary.scalar('loss_reconstruction', loss_reconstruction)
tf.summary.scalar('energy_sample', es_mean)
tf.summary.scalar('loss_sigmas_diag', loss_sigmas_diag)
summary_op = tf.summary.merge_all()
count_trainable_parameters()
checkpoint_saver = tf.train.Saver(max_to_keep=20)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
if last_checkpoint is not None:
print('Restoring from checkpoint: {}'.format(last_checkpoint))
checkpoint_saver.restore(sess, last_checkpoint)
else:
print('Training models from nothing')
train_writer = tf.summary.FileWriter('{}/{}/train'.format(args.logdir, global_step), sess.graph)
validate_writer = tf.summary.FileWriter('{}/{}/validate'.format(args.logdir, global_step), sess.graph)
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())
current_step = 0
for epoch_idx in range(args.epoch):
sess.run(training_iterator.initializer)
while True:
# training loop
try:
_, l, les, lr, lsd, summ_train = sess.run([train_op, loss, es_mean, loss_reconstruction, loss_sigmas_diag, summary_op],
feed_dict={handle: training_handle, is_training_placeholder: True})
current_step += 1
except tf.errors.OutOfRangeError:
break
val_loss = 0
val_cnt = 0
sess.run(validation_iterator.initializer)
while True:
# validation loop
try:
vl, summ_val = sess.run([loss, summary_op], feed_dict={handle: validation_handle, is_training_placeholder: False})
val_loss += vl
val_cnt += 1
except tf.errors.OutOfRangeError:
break
val_loss /= val_cnt
if val_loss < 300 and 0 < val_loss < best_loss:
print('best: checkpoint-{}-{}'.format(val_loss, global_step + epoch_idx))
previous_best = glob.glob(os.path.join(best_folder, 'checkpoint-{}-{}.*'.format(best_loss, best_run)))
for f in previous_best:
os.remove(os.path.join(best_folder, f))
best_loss = val_loss
best_run = global_step + epoch_idx
checkpoint_saver.save(sess, os.path.join(
best_folder, 'checkpoint-{}'.format(best_loss)), global_step=best_run)
if (global_step + epoch_idx) % 10 == 0:
train_writer.add_summary(summ_train, global_step + epoch_idx)
validate_writer.add_summary(summ_val, global_step + epoch_idx)
if (global_step + epoch_idx) % args.save_feq == 0:
print('checkpoint-{} saved'.format(global_step + epoch_idx))
checkpoint_saver.save(sess, os.path.join(
args.logdir, 'checkpoint'), global_step=global_step + epoch_idx)
print('{} current_epoch: {}, {}, {}, {}, val loss: {}'.format(global_step + epoch_idx, lr, les, lsd, l, val_loss))
def train_baseline(args):
best_folder = os.path.join(args.logdir, 'best')
best_run = -1
best_loss = 1e12
os.makedirs(best_folder, exist_ok=True)
last_checkpoint = tf.train.latest_checkpoint(args.logdir)
if last_checkpoint is not None:
global_step = int(re.search('-([0-9]+)$', last_checkpoint).groups()[0]) + 1
else:
global_step = 1
regions = get_region(args.pattern)
batch_tensors, handle, training_iterator, validation_iterator = make_dataset(regions, args.train_folder, args.validation_folder, batch_size=args.batch_size)
is_training_placeholder = tf.placeholder_with_default(tf.constant(True), [])
region_tensors = {}
for region_name in regions:
images = batch_tensors[region_name]
filters = regions[region_name]['filters']
scope = regions[region_name]['scope']
reuse = regions[region_name]['reuse']
region_tensors[region_name] = {'tensors': images, 'filters': filters, 'reuse': reuse, 'scope': scope}
*rest, loss = baseline_ae_model(region_tensors, is_training_placeholder, args.encoded_dims)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
optimizer = tf.train.AdamOptimizer(learning_rate=0.0001)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
tf.summary.scalar('loss', loss)
summary_op = tf.summary.merge_all()
count_trainable_parameters()
checkpoint_saver = tf.train.Saver(max_to_keep=100)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if last_checkpoint is not None:
print('Restoring from checkpoint: {}'.format(last_checkpoint))
checkpoint_saver.restore(sess, last_checkpoint)
else:
print('Training models from nothing')
train_writer = tf.summary.FileWriter('{}/{}/train'.format(args.logdir, global_step), sess.graph)
validate_writer = tf.summary.FileWriter('{}/{}/validate'.format(args.logdir, global_step), sess.graph)
training_handle = sess.run(training_iterator.string_handle())
validation_handle = sess.run(validation_iterator.string_handle())
current_step = 0
for epoch_idx in range(args.epoch):
sess.run(training_iterator.initializer)
while True:
# training loop
try:
_, l, summ_train = sess.run([train_op, loss, summary_op], feed_dict={handle: training_handle, is_training_placeholder: True})
current_step += 1
except tf.errors.OutOfRangeError:
break
val_loss = 0
val_cnt = 0
sess.run(validation_iterator.initializer)
while True:
# validation loop
try:
vl, summ_val = sess.run([loss, summary_op], feed_dict={handle: validation_handle, is_training_placeholder: False})
val_loss += vl
val_cnt += 1
except tf.errors.OutOfRangeError:
break
val_loss /= val_cnt
if val_loss < 300 and 0 < val_loss < best_loss:
print('best: checkpoint-{}-{}'.format(val_loss, global_step + epoch_idx))
previous_best = glob.glob(os.path.join(best_folder, 'checkpoint-{}-{}.*'.format(best_loss, best_run)))
for f in previous_best:
os.remove(os.path.join(best_folder, f))
best_loss = val_loss
best_run = global_step + epoch_idx
checkpoint_saver.save(sess, os.path.join(
best_folder, 'checkpoint-{}'.format(best_loss)), global_step=best_run)
if (global_step + epoch_idx) % 10 == 0:
train_writer.add_summary(summ_train, global_step + epoch_idx)
validate_writer.add_summary(summ_val, global_step + epoch_idx)
if (global_step + epoch_idx) % 100 == 0:
print('checkpoint-{} saved'.format(global_step + epoch_idx))
checkpoint_saver.save(sess, os.path.join(
args.logdir, 'checkpoint'), global_step=global_step + epoch_idx)
print('{} current_epoch: {}, val loss: {}'.format(global_step + epoch_idx, l, val_loss))
def parse_function(filename, regions, ext='png'):
image_string = tf.read_file(filename)
if ext == 'jpg':
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
else:
image_decoded = tf.image.decode_png(image_string, channels=3)
image_decoded = tf.cast(image_decoded, tf.float32) / 255.0
output = {}
for region_name in regions:
output[region_name] = find_region(image_decoded, regions[region_name], is_tf=True)
return output
def get_iterator(regions, folder, batch_size=32, buffer_size=200, num_parallel_calls=4, is_training=True, ext='png'):
files = glob.glob(os.path.join(folder, '*.{}'.format(ext)))
dataset = tf.data.Dataset.from_tensor_slices(files).shuffle(buffer_size)
if is_training:
skip_count = len(files) % batch_size
dataset = dataset.skip(skip_count)
parse_fn = partial(parse_function, regions=regions, ext=ext)
dataset = dataset.map(parse_fn, num_parallel_calls=num_parallel_calls).shuffle(buffer_size).batch(batch_size).prefetch(batch_size)
return dataset.make_initializable_iterator(), dataset
def make_dataset(regions,
train_folder,
validation_folder,
batch_size=24,
buffer_size=1000,
ext='png'):
training_iterator, training_dataset = get_iterator(regions, train_folder, batch_size, buffer_size=buffer_size, is_training=True, ext=ext)
validation_iterator, validation_dataset = get_iterator(regions, validation_folder, 1000, buffer_size=buffer_size, is_training=False, ext=ext)
handle = tf.placeholder(tf.string)
batch_tensors = tf.data.Iterator.from_string_handle(handle, output_types=training_dataset.output_types, output_shapes=training_dataset.output_shapes).get_next()
return batch_tensors, handle, training_iterator, validation_iterator
def main():
parser = ArgumentParser()
parser.add_argument('--epoch', default=2000, type=int)
parser.add_argument('--encoded_dims', default=2, type=int)
parser.add_argument('--latent_dims', default=2, type=int)
parser.add_argument('--pattern', default='default', type=str)
parser.add_argument('-l1', '--lambda1', default=0.1, type=float)
parser.add_argument('-l2', '--lambda2', default=0.005, type=float)
parser.add_argument('--mixtures', default=6, type=int)
parser.add_argument('--logdir', default='/home/i-lun/works/smt/tmp2', type=str)
parser.add_argument('-tf', '--train_folder', default='/mnt/storage/ipython/dataset/P8_SMT/J0602-J0603/train/OK/', type=str)
parser.add_argument('-vf', '--validation_folder', default='/mnt/storage/ipython/dataset/P8_SMT/J0602-J0603/test/OK/', type=str)
parser.add_argument('--batch_size', default=38, type=int)
parser.add_argument('--baseline', dest='baseline', action='store_true')
parser.add_argument('--ext', default='png', type=str)
parser.add_argument('--save_feq', default=100, type=int)
parser.set_defaults(baseline=False)
args = parser.parse_args()
if args.baseline:
print('baseline training')
train_baseline(args)
else:
train(args)
if __name__ == '__main__':
main()