-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevaluate_cluster.py
166 lines (138 loc) · 6.84 KB
/
evaluate_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# coding: utf-8
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import random
from sklearn import metrics
from munkres import Munkres
import torch
from scipy.optimize import linear_sum_assignment
def evaluate(label, pred, calc_acc=False, total_probs=None):
nmi = metrics.normalized_mutual_info_score(label, pred)
ami = metrics.adjusted_mutual_info_score(label, pred)
ari = metrics.adjusted_rand_score(label, pred)
f = metrics.fowlkes_mallows_score(label, pred)
if not calc_acc:
return nmi, ami, ari, f, -1
#pred_adjusted = get_y_preds(label, pred, len(set(label)))
#acc = metrics.accuracy_score(pred_adjusted, label)
if total_probs is not None:
acc, match, reordered_preds, top5 = hungarian_evaluate(torch.Tensor(label).cuda(), torch.Tensor(pred).cuda(), torch.Tensor(total_probs).cuda())
return nmi, ami, ari, f, acc, match, reordered_preds.cpu().detach().numpy(), top5
else:
acc, match, reordered_preds = hungarian_evaluate(torch.Tensor(label).cuda(), torch.Tensor(pred).cuda(), total_probs)
return nmi, ami, ari, f, acc, match, reordered_preds.cpu().detach().numpy()
def calculate_cost_matrix(C, n_clusters):
cost_matrix = np.zeros((n_clusters, n_clusters))
# cost_matrix[i,j] will be the cost of assigning cluster i to label j
for j in range(n_clusters):
s = np.sum(C[:, j]) # number of examples in cluster i
for i in range(n_clusters):
t = C[i, j]
cost_matrix[j, i] = s - t
return cost_matrix
def get_cluster_labels_from_indices(indices):
n_clusters = len(indices)
cluster_labels = np.zeros(n_clusters)
for i in range(n_clusters):
cluster_labels[i] = indices[i][1]
return cluster_labels
def get_y_preds(y_true, cluster_assignments, n_clusters):
"""
Computes the predicted labels, where label assignments now
correspond to the actual labels in y_true (as estimated by Munkres)
cluster_assignments: array of labels, outputted by kmeans
y_true: true labels
n_clusters: number of clusters in the dataset
returns: a tuple containing the accuracy and confusion matrix,
in that order
"""
confusion_matrix = metrics.confusion_matrix(y_true, cluster_assignments, labels=None)
# compute accuracy based on optimal 1:1 assignment of clusters to labels
cost_matrix = calculate_cost_matrix(confusion_matrix, n_clusters)
indices = Munkres().compute(cost_matrix)
kmeans_to_true_cluster_labels = get_cluster_labels_from_indices(indices)
if np.min(cluster_assignments) != 0:
cluster_assignments = cluster_assignments - np.min(cluster_assignments)
y_pred = kmeans_to_true_cluster_labels[cluster_assignments]
return y_pred
# evaluate function modified from SCAN
@torch.no_grad()
def hungarian_evaluate(targets, predictions, total_probs, class_names=None, compute_purity=True, compute_confusion_matrix=True, confusion_matrix_file='confusion.pdf', percent=[1.0]):
# Evaluate model based on hungarian matching between predicted cluster assignment and gt classes.
# This is computed only for the passed subhead index.
# Hungarian matching
num_classes = torch.unique(targets).numel()
num_elems = targets.size(0)
match = _hungarian_match(predictions, targets, preds_k=num_classes, targets_k=num_classes)
np.save('imagenet_match.npy', np.array(match))
reordered_preds = torch.zeros(num_elems, dtype=predictions.dtype).cuda()
for pred_i, target_i in match:
reordered_preds[predictions == int(pred_i)] = int(target_i)
# Gather performance metrics
acc = int((reordered_preds == targets).sum()) / float(num_elems)
print("Using {} Samples to Estimate Pseudo2Real Label Mapping, Acc:{:.4f}".format(int(num_elems), acc))
#nmi = metrics.normalized_mutual_info_score(targets.cpu().numpy(), predictions.cpu().numpy())
#ari = metrics.adjusted_rand_score(targets.cpu().numpy(), predictions.cpu().numpy())
if total_probs is not None:
_, preds_top5 = total_probs.topk(5, 1, largest=True)
reordered_preds_top5 = torch.zeros_like(preds_top5)
for pred_i, target_i in match:
reordered_preds_top5[preds_top5 == int(pred_i)] = int(target_i)
correct_top5_binary = reordered_preds_top5.eq(targets.view(-1,1).expand_as(reordered_preds_top5))
top5 = float(correct_top5_binary.sum()) / float(num_elems)
print("Using {} Samples to Estimate Pseudo2Real Label Mapping, Acc Top-5 :{:.4f}".format(int(num_elems), top5))
## Compute confusion matrix
if compute_confusion_matrix:
confusion_matrix(reordered_preds.cpu().numpy(), targets.cpu().numpy(), class_names, confusion_matrix_file)
if total_probs is not None:
return acc, match, reordered_preds, top5
else:
return acc, match, reordered_preds
#return {'ACC': acc, 'ARI': ari, 'NMI': nmi, 'ACC Top-5': top5, 'hungarian_match': match}
@torch.no_grad()
def _hungarian_match(flat_preds, flat_targets, preds_k, targets_k):
# Based on implementation from IIC
num_samples = flat_targets.shape[0]
assert (preds_k == targets_k) # one to one
num_k = preds_k
num_correct = np.zeros((num_k, num_k))
for c1 in range(num_k):
for c2 in range(num_k):
# elementwise, so each sample contributes once
votes = int(((flat_preds == c1) * (flat_targets == c2)).sum())
num_correct[c1, c2] = votes
# num_correct is small
match = linear_sum_assignment(num_samples - num_correct)
match = np.array(list(zip(*match)))
# return as list of tuples, out_c to gt_c
res = []
for out_c, gt_c in match:
res.append((out_c, gt_c))
return res
def confusion_matrix(predictions, gt, class_names, output_file='confusion.pdf'):
# Plot confusion_matrix and store result to output_file
import sklearn.metrics
import matplotlib.pyplot as plt
confusion_matrix = sklearn.metrics.confusion_matrix(gt, predictions)
confusion_matrix = confusion_matrix / np.sum(confusion_matrix, 1)
fig, axes = plt.subplots(1)
plt.imshow(confusion_matrix, cmap='Blues')
#axes.set_xticks([i for i in range(len(class_names))])
#axes.set_yticks([i for i in range(len(class_names))])
#axes.set_xticklabels(class_names, ha='right', fontsize=8, rotation=40)
#axes.set_yticklabels(class_names, ha='right', fontsize=8)
#for (i, j), z in np.ndenumerate(confusion_matrix):
# if i == j:
# axes.text(j, i, '%d' %(100*z), ha='center', va='center', color='white', fontsize=6)
# else:
# pass
plt.tight_layout()
if output_file is None:
plt.show()
else:
plt.savefig(output_file, dpi=300, bbox_inches='tight')
plt.close()