-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunsupervised_benchmark.py
88 lines (79 loc) · 3.46 KB
/
unsupervised_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import sklearn
import sklearn.cluster
import sklearn.metrics
import numpy as np
import generate_graph
import os
datasets = ['STL',"flowers102",'ESC-50','IMDB',"cora"]
dataset_default = datasets[0]
refined_path_default = os.path.join("refined_datasets","features")
graph_path_default = os.path.join("graph","STL_Cosine_False_0_None.gz")
def run_unsupervised_benchmark(dataset=dataset_default,graph_path=graph_path_default,refined_path=refined_path_default,assign_labels="kmeans"):
if dataset == "STL":
file = "stl.npz"
nodes = 1000
n_clusters = 10
elif dataset == "ESC-50":
file = "esc-50.npz"
nodes = 2000
n_clusters = 50
elif dataset == "flowers102":
file = "flowers102.npz"
nodes = 1020
n_clusters = 102
elif dataset == "cora":
file = "cora.npz"
nodes = 2708
n_clusters = 7
file_path = os.path.join(refined_path,file)
data = np.load(file_path,allow_pickle=True)
labels = data["y"]
graph = generate_graph.read_adjacence_matrix(nodes,graph_path)
clustering = sklearn.cluster.SpectralClustering(n_clusters=n_clusters,assign_labels=assign_labels,n_init=1000,random_state=0,affinity="precomputed")
labels_result = clustering.fit_predict(graph)
AMI = 100*sklearn.metrics.adjusted_mutual_info_score(labels, labels_result,average_method="arithmetic")
NMI = 100*sklearn.metrics.normalized_mutual_info_score(labels, labels_result,average_method="arithmetic")
ARI = 100*sklearn.metrics.adjusted_rand_score(labels, labels_result)
return AMI, NMI, ARI
def run_kmeans(dataset=dataset_default,graph_path=graph_path_default,refined_path=refined_path_default,assign_labels="kmeans"):
if dataset == "STL":
file = "stl.npz"
nodes = 1000
n_clusters = 10
elif dataset == "ESC-50":
file = "esc-50.npz"
nodes = 2000
n_clusters = 50
elif dataset == "flowers102":
file = "flowers102.npz"
nodes = 1020
n_clusters = 102
elif dataset == "cora":
file = "cora.npz"
nodes = 2708
n_clusters = 7
file_path = os.path.join(refined_path,file)
data = np.load(file_path)
labels = data["y"]
features = data["x"]
clustering = sklearn.cluster.KMeans(n_clusters=n_clusters)
labels_result = clustering.fit_predict(features)
AMI = 100*sklearn.metrics.adjusted_mutual_info_score(labels, labels_result,average_method="arithmetic")
NMI = 100*sklearn.metrics.normalized_mutual_info_score(labels, labels_result,average_method="arithmetic")
ARI = 100*sklearn.metrics.adjusted_rand_score(labels, labels_result)
return AMI, NMI, ARI
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument('--dataset',
choices=datasets, default=dataset_default,
help='Dataset with features extracted')
parser.add_argument('--graph_path',
type=str, default=graph_path_default,
help='Path to the graph file to use')
parser.add_argument('--refined_path',
type=str, default=refined_path_default,
help='Refined dataset path')
args = parser.parse_args()
AMI, NMI, ARI = run_kmeans(dataset=args.dataset,graph_path=args.graph_path,refined_path=args.refined_path)
print("AMI: {:.2f}, NMI: {:.2f}, ARI: {:.2f}".format(AMI,NMI,ARI))