forked from csc-training/hpc-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskeleton.py
136 lines (116 loc) · 4.24 KB
/
skeleton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import print_function
import numpy as np
import time
# TODO: initialise MPI by importing it
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# Set the colormap
plt.rcParams['image.cmap'] = 'BrBG'
# Basic parameters
a = 0.5 # Diffusion constant
timesteps = 200 # Number of time-steps to evolve system
image_interval = 4000 # Write frequency for png files
# Grid spacings
dx = 0.01
dy = 0.01
dx2 = dx**2
dy2 = dy**2
# For stability, this is the largest interval possible
# for the size of the time-step:
dt = dx2*dy2 / ( 2*a*(dx2+dy2) )
# MPI globals
# TODO: find out your rank and communicator size
# Up/down neighbouring MPI ranks
up = rank - 1
down = rank + 1
# TODO: if at the edge of the grid, use MPI.PROC_NULL
def evolve(u, u_previous, a, dt, dx2, dy2):
"""Explicit time evolution.
u: new temperature field
u_previous: previous field
a: diffusion constant
dt: time step
dx2: grid spacing squared, i.e. dx^2
dy2: -- "" -- , i.e. dy^2"""
u[1:-1, 1:-1] = u_previous[1:-1, 1:-1] + a * dt * ( \
(u_previous[2:, 1:-1] - 2*u_previous[1:-1, 1:-1] + \
u_previous[:-2, 1:-1]) / dx2 + \
(u_previous[1:-1, 2:] - 2*u_previous[1:-1, 1:-1] + \
u_previous[1:-1, :-2]) / dy2 )
u_previous[:] = u[:]
def init_fields(filename):
# Read the initial temperature field from file
field = np.loadtxt(filename)
field0 = field.copy() # Array for field of previous time step
return field, field0
def write_field(field, step):
plt.gca().clear()
plt.imshow(field)
plt.axis('off')
plt.savefig('heat_{0:03d}.png'.format(step))
def exchange(field):
# TODO: select border rows from the field and add MPI calls to
# exchange them with the neighbouring tasks
# send down, receive from up
sbuf = ... # last row of real data
rbuf = ... # ghost row
comm.Sendrecv(...)
# send up, receive from down
sbuf = ... # first row of real data
rbuf = ... # ghost row
comm.Sendrecv(...)
def iterate(field, local_field, local_field0, timesteps, image_interval):
for m in range(1, timesteps+1):
exchange(local_field0)
evolve(local_field, local_field0, a, dt, dx2, dy2)
if m % image_interval == 0:
# TODO: gather partial fields to reconstruct the full field
comm.Gather(...)
if rank == 0:
write_field(field, m)
def main():
# Read and scatter the initial temperature field
if rank == 0:
field, field0 = init_fields('bottle.dat')
shape = field.shape
dtype = field.dtype
# TODO: send the shape and dtype to everyone else
else:
field = None
# TODO: receive the shape and dtype
if shape[0] % size:
raise ValueError('Number of rows in the temperature field (' \
+ str(shape[0]) + ') needs to be divisible by the number ' \
+ 'of MPI tasks (' + str(size) + ').')
n = shape[0] / size # number of rows for each MPI task
m = shape[1] # number of columns in the field
# TODO: scatter a portion of the field to each MPI task
buff = ... # receive buffer for (n,m) elements of dtype
comm.Scatter(...)
# TODO: construct local field based on the received data
# Note: remember to add two ghost rows (one on each side)
local_field = ...
local_field0 = np.zeros_like(local_field) # array for previous time step
# Fix outer boundary ghost layers to account for aperiodicity?
if True:
if rank == 0:
local_field[0,:] = local_field[1,:]
if rank == size - 1:
local_field[-1,:] = local_field[-2,:]
local_field0[:] = local_field[:]
# Plot/save initial field
if rank == 0:
write_field(field, 0)
# Iterate
t0 = time.time()
iterate(field, local_field, local_field0, timesteps, image_interval)
t1 = time.time()
# Plot/save final field
# TODO: gather partial fields to reconstruct the full field
comm.Gather(...)
if rank == 0:
write_field(field, timesteps)
print("Running time: {0}".format(t1-t0))
if __name__ == '__main__':
main()