-
Notifications
You must be signed in to change notification settings - Fork 0
/
1_naive_dfs_no_rem_unroll_size.cpp
135 lines (124 loc) · 3.03 KB
/
1_naive_dfs_no_rem_unroll_size.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include "1_naive_dfs_no_rem_unroll_size.h"
using namespace ndfs_no_rem_unroll_size;
Graph::Graph(int num_nodes, int search_depth) {
this->graph_size = num_nodes;
adj.resize(num_nodes);
visited.resize(num_nodes, false);
cycles.resize(30, 0);
max_depth = search_depth;
}
void Graph::AddEdge(int v, int w) {
adj[v].push_back(w); // Add w to v’s list.
}
void Graph::RemoveNode(int node)
{
std::vector<int> bfsq = { node };
while (!bfsq.empty())
{
int u = bfsq.back();
bfsq.pop_back();
for (auto u2 : adj[u])
{
adj[u2].erase(std::remove(adj[u2].begin(), adj[u2].end(), u), adj[u2].end());
if (size(adj[u2]) == 1)
bfsq.push_back(u2);
}
adj[u].clear();
}
}
void Graph::Cycles(int v, int d) {
visited[v] = true;
std::vector<int>::iterator i = adj[v].begin();
for (int x = 0; x < 3; ++x, ++i) {
//for (int i : adj[v]) {
#include "0_nodes_vis_counter.h"
if (!visited[*i])
{
visited[*i] = true;
std::vector<int>::iterator j = adj[*i].begin();
for (int y = 0; y < 6; ++y, ++j) {
//for (int j : adj[i]) {
#include "0_nodes_vis_counter.h"
if (*j == rootnode)
++cycles[d];
else if (d + 2 <= max_depth) {
if (!visited[*j]) {
Cycles(*j, d + 2);
}
}
}
visited[*i] = false;
}
}
visited[v] = false;
}
void Graph::DFS(int rootNodeOrder)
{
int start, end, it;
switch (rootNodeOrder) {
case 0: start = 0; end = 2 * graph_size / 3; it = 1; break;
case 1: start = 2 * graph_size / 3 - 1; end = -1; it = -1; break;
case 2: start = 2 * graph_size / 3; end = graph_size; it = 1; break;
case 3: start = graph_size - 1; end = 2 * graph_size / 3 - 1; it = -1; break;
default: start = 0; end = 2 * graph_size / 3; it = 1; break;
}
for (int i = start; i != end; i += it)
{
rootnode = i;
Cycles(i, 2);
visited[i] = true;
//RemoveNode(i);
adj[i].clear();
}
//Output cycle count, we zero the count of degree-two cycles.
cycles[1] = 0; cycles[2] = 0;
for (auto k : cycles)
std::cout << k / 2 << ' ';
}
void ndfs_no_rem_unroll_size::Foo(std::string codeName, int depth, int rootNodeOrder)
{
//Import data to cpp
int n, k, max_row, max_col, temp;
std::vector<int> numbers;
std::ifstream myfile;
myfile.open(codeName);
myfile >> n >> k >> max_row >> max_col;
while (myfile >> temp)
numbers.push_back(temp);
myfile.close();
//Build graph
int alist = 0;
if (codeName.substr(codeName.size() - 2) == ".a") {
alist = 1;
}
Graph g = Graph(n + k, depth);
int x = 0;
int y = n + k;
while (x < n)
{
for (int z = 0; z < max_row; z++)
{
if (numbers[y] > 0)
{
if (alist) {
g.AddEdge(x, numbers[y] + n - 1);
g.AddEdge(numbers[y] + n - 1, x);
}
else
{
g.AddEdge(x, numbers[y] - 1);
}
}
y++;
}
x++;
}
std::vector<int>().swap(numbers);
//Search for cycles, and start timers
LARGE_INTEGER freq, t1, t2;
QueryPerformanceFrequency(&freq);
QueryPerformanceCounter(&t1);
g.DFS(rootNodeOrder);
QueryPerformanceCounter(&t2);
std::cout << ":: " << (t2.QuadPart - t1.QuadPart) * 1.0 / freq.QuadPart << "\n";
}