-
Notifications
You must be signed in to change notification settings - Fork 0
/
description.nb
182 lines (176 loc) · 5.25 KB
/
description.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 5188, 173]
NotebookOptionsPosition[ 4737, 155]
NotebookOutlinePosition[ 5277, 175]
CellTagsIndexPosition[ 5234, 172]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[{
"This was an attempt to define the problem as a set of differential \
equations. It ",
StyleBox["almost",
FontSlant->"Italic"],
" works.\n- One spatial dimension, one time dimension. \n- There are N \
clocks. Initially, all clocks have zero velocity and synchronized times, but \
different positions and masses.\n- Clocks have acceleration 'programs' that \
specify the force that will be applied to the clock at specific proper times. \
(For example, a rocket attached to a clock fires until the clock reads 2.0, \
then stops until the clock reads 8.0, then fires in reverse, etc.)\n- The \
simulation computes the path of each clock as seen by any one of the clocks \
(the reference clock). \n\n",
Cell[BoxData[
FormBox["t", TraditionalForm]]],
" is the current proper time of the reference clock (initialized to 0).\nAt \
every time step ",
Cell[BoxData[
FormBox["\[CapitalDelta]t", TraditionalForm]]],
", I run the following procedure:\n 1) Compute instantaneous acceleration \
of reference clock at time t\n ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["g", "ref"], " ", "=", " ",
RowBox[{
RowBox[{
SubscriptBox["f", "ref"], "(", "t", ")"}], " ", "/", " ",
SubscriptBox["m", "ref"]}]}], TraditionalForm]]],
"\n\n 2) For each clock ",
Cell[BoxData[
FormBox["C", TraditionalForm]]],
" in the simulation:\n ",
Cell[BoxData[
FormBox["m", TraditionalForm]]],
", ",
Cell[BoxData[
FormBox["x", TraditionalForm]]],
", and ",
Cell[BoxData[
FormBox["v", TraditionalForm]]],
" are the mass, position, and velocity of the ",
Cell[BoxData[
FormBox["C", TraditionalForm]]],
" relative to the reference clock at time ",
Cell[BoxData[
FormBox["t", TraditionalForm]]],
".\n ",
Cell[BoxData[
FormBox[
RowBox[{"\[Tau]", " "}], TraditionalForm]]],
"is the proper time of ",
Cell[BoxData[
FormBox["C", TraditionalForm]]],
" as seen by the reference clock at time ",
Cell[BoxData[
FormBox["t", TraditionalForm]]],
".\n ",
Cell[BoxData[
FormBox[
SubscriptBox["m", "0"], TraditionalForm]]],
" is the proper inertial mass of ",
Cell[BoxData[
FormBox["C", TraditionalForm]]],
".\n ",
Cell[BoxData[
FormBox[
RowBox[{
SubscriptBox["f", "C"], "(", "\[Tau]", ")"}], TraditionalForm]]],
" is the force applied to ",
Cell[BoxData[
FormBox["C", TraditionalForm]]],
" at its proper time \[Tau]\n \n ",
Cell[BoxData[
FormBox[
RowBox[{"\[Gamma]", "=",
SqrtBox[
RowBox[{"1", "-",
RowBox[{
SuperscriptBox["v", "2"], "/",
SuperscriptBox["c", "2"]}]}]]}], TraditionalForm]]],
"\n ",
Cell[BoxData[
FormBox[
RowBox[{"m", "=",
RowBox[{"\[Gamma]", " ",
SubscriptBox["m", "0"]}]}], TraditionalForm]]],
"\n ",
Cell[BoxData[
FormBox[
RowBox[{"\[Beta]", "=",
RowBox[{
FractionBox[
RowBox[{"x", " ",
SubscriptBox["g", "ref"]}],
SuperscriptBox["c", "2"]], "+", "1"}]}], TraditionalForm]]],
" (This is a time dilation factor due to the acceleration of the \
reference clock)\n ",
Cell[BoxData[
FormBox[
RowBox[{"g", "=",
RowBox[{
FractionBox[
RowBox[{"\[Beta]", " ",
RowBox[{
SubscriptBox["f", "C"], "(", "\[Tau]", ")"}]}], "m"], "-",
SubscriptBox["g", "ref"]}]}], TraditionalForm]]],
"\n ",
Cell[BoxData[
FormBox[
RowBox[{"\[Tau]", "+=",
RowBox[{
FractionBox["\[Beta]", "\[Gamma]"], "\[CapitalDelta]t"}]}],
TraditionalForm]]],
"\n ",
Cell[BoxData[
FormBox[
RowBox[{"v", "+=",
RowBox[{"g", " ", "\[CapitalDelta]t"}]}], TraditionalForm]]],
"\n ",
Cell[BoxData[
FormBox[
RowBox[{"x", "+=",
RowBox[{"\[Beta]", " ", "v", " ", "\[CapitalDelta]t"}]}],
TraditionalForm]]],
"\n \n 3) Increment time\n ",
Cell[BoxData[
FormBox[
RowBox[{"t", "+=", "\[CapitalDelta]t"}], TraditionalForm]]],
"\n \n \n \n\n\n\n"
}], "Text",
CellChangeTimes->{
3.523492818617631*^9, {3.52349304355148*^9, 3.523493081178849*^9}, {
3.555432981131118*^9, 3.555433051123339*^9}}]
},
WindowSize->{832, 750},
WindowMargins->{{191, Automatic}, {Automatic, 79}},
PrintingPageRange->{Automatic, Automatic},
PrintingOptions->{"Magnification"->1.,
"PaperOrientation"->"Portrait",
"PaperSize"->{611.28, 789.57},
"PostScriptOutputFile"->"/home/luke/tmp/relativity.pdf"},
FrontEndVersion->"8.0 for Linux x86 (32-bit) (October 10, 2011)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[545, 20, 4188, 133, 722, "Text"]
}
]
*)
(* End of internal cache information *)