-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture03_main.tex
2188 lines (1699 loc) · 58.5 KB
/
slides_lecture03_main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\renewcommand{\prevlecture}{2 }
\renewcommand{\thislecture}{3 }
\renewcommand{\nextlecture}{4 }
%
% Cover page
%
\title[PHYS 201 / Lecture \thislecture]
{
PHYS 201 / Lecture \thislecture\\
{\it Electrical potential energy and potential, Circuital law,
Poisson and Laplace equations, Boundary conditions, Uniqueness theorem}\\
}
\input{slides_author.tex}
\begin{frame}[plain]
\titlepage
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Revision of previous lecture
%
\renewcommand{\lecturesummarytitle}{Revision }
\input{slides_lecture02_summary.tex}
%
% Plan for this lecture
%
\begin{frame}{Plan for Lecture \thislecture}
\begin{itemize}
\item How much {\bf work} do I need to do {\bf to bring charges close together?}\\
\vspace{0.2cm}
We will calculate the work done to assemble
\begin{itemize}
\item discrete systems of 2, 3 and N charges, and
\item a continuous distribution of charge characterised by density $\rho(\vec{r})$
\end{itemize}
\vspace{0.1cm}
\item Will see that the work done is {\bf path-independent}.
\vspace{0.1cm}
\item Will explain that the work becomes the {\bf electric potential energy}
of the system of charges and that it is stored in the electric field.
\item Will introduce the concept of {\bf electric potential}.
\vspace{0.1cm}
\item Will study the {\bf circuital law} in differential and integral forms.
\vspace{0.1cm}
\item Will introduce the {\bf Poisson} and {\bf Laplace} equations.
\vspace{0.1cm}
\item In parallel, will continue revising some relevant maths:
\begin{itemize}
\item The Laplace operator, the "curl" of a vector field,
boundary problems and the {\em uniqueness theorem}
\end{itemize}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
%
%
\begin{frame}{Assembling a system of 2 same-sign charges}
Consider two same-sign charges separated by an infinite distance.\\
\vspace{0.2cm}
It is easy to understand that {\bf in order to bring the two charges closer together I need to do work.}\\
\vspace{0.3cm}
\begin{center}
\includegraphics[width=0.70\textwidth]{./images/schematics/coulomb_force_2_like_sign_charges.png}\\
\end{center}
\vspace{0.2cm}
\underline{Why?}\\
\vspace{0.1cm}
Because {\bf they repel each other.} It is like pushing in a spring!
\end{frame}
% starting reminder
{
\reminderslide
%
%
%
\begin{frame}{Reminder: Work}
{\small
A force is said to {\bf do work} (denoted with W) if, when it is acting on a body,
there is a {\bf displacement of the point of application in the direction of the force}.
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.30\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/work.png}\\
\end{center}
\end{column}
\begin{column}{0.70\textwidth}
The work dW done by a force $\vec{F}$ displacing the point of application by $d\vec{\ell}$,
is given by the dot product:
\begin{equation*}
dW = \vec{F} \cdot d\vec{\ell}
\end{equation*}
Notice that work is a {\bf scalar}.
Its SI unit is a {\bf Joule (J)}: It is the work done by a force of 1 N over a distance of 1 m.
\end{column}
\end{columns}
\vspace{0.3cm}
Note that {\bf a force perpendicular to the direction of motion does no work}.\\
\vspace{0.2cm}
The {\bf work can be positive or negative}.
By convention, we take work to be negative if it opposes the motion, i.e. $\theta > 90^{o}$.\\
\vspace{0.2cm}
The total work along a trajectory is given by integrating (summing up) the work done for
each infinitesimal displacement $d\vec{\ell}$: $W = \int dW = \int \vec{F} \cdot d\vec{\ell}$.\\
\vspace{0.2cm}
{\bf Work is very closely related to energy}.
}
\end{frame}
} % end reminder
%
%
%
\begin{frame}{Assembling a system of 2 same-sign charges}
We will answer the following question:
{\bf How much work is needed to bring 2 same-sign charges $q_1$ and $q_2$ from infinity to a distance $r_0$}?\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.70\textwidth}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/work_2_like_charges_2_q1q2.png}\\
\end{center}
\end{column}
\begin{column}{0.30\textwidth}
{\small
\underline{Note}: \\
\vspace{0.2cm}
The two like charges repel each other.\\
\vspace{0.2cm}
I will calculate {\bf the work done by \underline{me} ($F_{prof}$)
against the action of the field ($F_{21}$)},\\
not the work done by the field force ($F_{21}$).\\
\vspace{0.2cm}
The difference between the two is a sign.\\
}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Work done assembling a system of 2 same-sign charges}
Placing charge $q_1$:\\
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/work_2_like_charges_2_q1.png}\\
\end{center}
\end{column}
\begin{column}{0.54\textwidth}
\begin{itemize}
{\small
\item Initially all charges are at {\em "infinity"}
\begin{itemize}
{\small
\item i.e. far enough so that the force between them is so small that it can be neglected
}
\end{itemize}
\vspace{0.2cm}
\item I reach out all the way to infinity and grab charge $q_{1}$
\vspace{0.2cm}
\item I bring the charge $q_{1}$ at the origin of my coordinate system
\begin{itemize}
{\small
\item There is no opposing force (other charges are still infinitely away)
}
\end{itemize}
\vspace{0.2cm}
\item That was an "easy" task
\begin{itemize}
{\small
\item I did {\bf no work!}
}
\end{itemize}
}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Work done assembling a system of 2 same-sign charges}
Placing charge $q_2$:\\
\begin{columns}
\begin{column}{0.45\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/work_2_like_charges_2_q1q2.png}\\
\end{center}
\end{column}
\begin{column}{0.55\textwidth}
\begin{itemize}
{\small
\item I reach out all the way to infinity again and grab charge $q_2$ (same-sign as $q_1$).
\item I begin to bring the charge $q_2$ closer to $q_1$, intending to pin it at $\vec{r_0}$.
\vspace{0.2cm}
\item There is an {\bf opposing force} due to $q_1$
\item The force $\vec{F}_{21}$ exerted on charge $q_2$ due to charge $q_1$ is:
\begin{equation*}
\vec{F}_{21} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r}
\end{equation*}
\item I need to overcome this force so I apply a force $\vec{F}_{prof}$ which is:
\begin{equation*}
\vec{F}_{prof} = -\vec{F}_{21}
\end{equation*}
}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Work done assembling a system of 2 same-sign charges}
The {\bf work done by me} ($\vec{F}_{prof}$)
as I try {\bf to overcome the repulsive force} ($\vec{F}_{21}$) between $q_1$ and $q_2$
and move $q_2$ by an infinitesimally small distance $d\vec{\ell}$ is:
\begin{equation*}
dW_{prof} =
\vec{F}_{prof} \cdot d\vec{\ell} =
- \vec{F}_{21} \cdot d\vec{\ell} =
- \Big( \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r} \Big) \cdot d\vec{\ell}
\end{equation*}
The force is a radial vector. If I only move $q_2$ colinearly with the force ($d\vec{\ell} = d\vec{r}$),
the above dot product simplifies to:
\begin{equation*}
dW_{prof} = - \frac{q_1 q_2}{4\pi\epsilon_0} \frac{dr}{r^2}
\end{equation*}
The total work done to bring the $q_2$ from infinity to the position $\vec{r}_0$
is found by integrating $dW_{prof}$ from infinity ($\infty$) to $r_0$:
\begin{equation*}
W_{prof} = \int_{\infty}^{r_{0}} dW_{prof} = - \frac{q_1 q_2}{4\pi\epsilon_0} \int_{\infty}^{r_{0}} \frac{dr}{r^2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Work done assembling a system of 2 same-sign charges}
I am sure that you can all calculate this integral:
\begin{equation*}
W_{prof} = - \frac{q_1 q_2}{4\pi\epsilon_0} \int_{\infty}^{r_{0}} \frac{dr}{r^2}
\end{equation*}
The {\em anti-derivative} of $1/r^2$ is $-1/r$, so the integral becomes:
\begin{equation*}
\displaystyle
W_{prof} = - \frac{q_1 q_2}{4\pi\epsilon_0} \Big( -\frac{1}{r} \Big) {\rvert}_{\infty}^{r_{0}}
= \frac{q_1 q_2}{4\pi\epsilon_0} \Big( \frac{1}{r} \Big) {\rvert}_{\infty}^{r_{0}}
= \frac{q_1 q_2}{4\pi\epsilon_0} \Big( \frac{1}{r_0} - lim_{x\rightarrow\infty}\frac{1}{x} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
W_{prof} = \frac{q_1 q_2}{4\pi\epsilon_0 r_0}
\end{equation*}
\begin{blockminirem}{Mini reminder: Anti-derivatives}
The {\em anti-derivative} of a function f is a differentiable function F whose derivative is equal to f (i.e. F$^{\prime}$ = f).
Confirm that (-1/r)$^{\prime}$ = 1/r$^2$.
\end{blockminirem}
\end{frame}
%
%
%
\begin{frame}{Work done assembling a system of 2 \st{same-sign} charges}
We showed that the total work I need to do to assemble a system of 2 same-sign
charges $q_1$ and $q_2$ at distance $r_0$ is given by:
\begin{equation*}
W_{prof} = \frac{q_1 q_2}{4\pi\epsilon_0 r_0}
\end{equation*}
The same result would have been obtained if, instead of considering 2 same-sign charges,
I had used one positive and one negative charge.\\
\vspace{0.2cm}
Notice that $W_{prof}$ involves the product $q_1 q_2$:
\begin{itemize}
\item {\bf For same sign charges $q_1 q_2 > 0$}: \\
To assemble that system I need to do {\bf positive work} (see convention discussed earlier).
I need to spend energy because the force between the two charges is repulsive.
\item {\bf For charges with different sign $q_1 q_2 < 0$}: \\
To assemble that system I need to do {\bf negative work} as the force is attractive.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Electrostatic potential energy of a system of 2 charges}
\vspace{0.1cm}
The work I did ($W_{prof}$) became the {\bf electrostatic potential energy of the system}
of two charges (usually denoted with U):
\begin{equation*}
W_{prof} = U = \frac{q_1 q_2}{4\pi\epsilon_0 r_0}
\end{equation*}
\vspace{0.2cm}
\begin{itemize}
{
\item
The electrostatic potential energy is the energy of the system of $(q_1, q_2)$,
{\bf not the energy of each of $q_1$ and $q_2$ individually}.\\
\item
As we shall see later in this course, this electrostatic potential energy is
{\bf stored in the electric field} produced by the two charges.\\
\item
The potential energy (like the work done to assemble the system) can be positive or negative.
}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Path-independence of work}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.99\textwidth]{./images/schematics/work_2_like_charges_2_q1q2_curved.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
We showed that the total work $W_{prof}$ that I need to do to assemble a system of 2 same-sign
charges $q_1$ and $q_2$ at distance $r_0$, and hence the electrostatic potential energy U stored in the system,
is given by:
\begin{equation*}
W_{prof} = U = \frac{q_1 q_2}{4\pi\epsilon_0 r_0}
\end{equation*}
I obtained that result by moving $q_2$ along a {\em straight} line that
was collinear with the electric force.\\
\end{column}
\end{columns}
\vspace{0.2cm}
There is an obvious question:\\
Would a {\bf longer curved trajectory give me a different result}?
\end{frame}
%
%
%
\begin{frame}{Path-independence of work}
The answer to the previous question is no.
\begin{itemize}
\item The work done by the electric force is path-independent.\\
\item We say then that {\bf the electric force is conservative}.\\
\end{itemize}
\vspace{0.3cm}
It is not difficult to understand that physically:
\begin{itemize}
{\small
\item Work is converted to potential energy
stored in the electric field.
\item But identical charge configurations (given charges placed at given positions)
produce the exact same field.
\item Recall the general result for $\vec{E}$:
\begin{equation*}
\vec{E}(\vec{r}) = \frac{\vec{F}_{Q}}{Q} = \frac{1}{4\pi\epsilon_0} \int_{\tau}
d\tau^{\prime} \frac{\rho({\pvec{r}'})}{|\vec{r}-\pvec{r}'|^{3}} (\vec{r}-\pvec{r}')
\end{equation*}
What matters is the distribution of charge, not how it got there.
\item So the work done should be independent of the path.
}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Path-independence of work}
{\small
We can show the path-independence mathematically.
It is sufficient to show this for charge moving {\bf between two infinitesimally separated spherical shells}.
%If it doesn't matter how I go from $\vec{r}$ to $\vec{r}+d\vec{r}$, then it doesn't matter how I go from $\vec{r}$ to any point.\\
}
\vspace{0.3cm}
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/schematics/work_2_like_charges_2_q1q2_step.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
{\small
The work done by moving $q_2$ along $d\vec{r}$ is:
\begin{equation*}
dW = \vec{F}_{prof} \cdot d\vec{r} = |\vec{F}_{prof}| |d\vec{r}|
\end{equation*}
whereas the work done by moving it along $d\pvec{r}'$ is:
\begin{equation*}
dW^{\prime} = \vec{F}_{prof} \cdot d\pvec{r}' = |\vec{F}_{prof}| |d\pvec{r}'| cos\theta
\end{equation*}
But $|d\vec{r}| = |d\pvec{r}'| cos\theta$, therefore:
\begin{equation*}
dW = dW^{\prime}
\end{equation*}
}
\end{column}
\end{columns}
\vspace{0.1cm}
{\small
Hint: Since the result is path-independent, choose a path that simplifies the calculations
(usually, by exploiting the symmetries of the problem)
}
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
How about a slightly more complex system that has 3 charges $q_1$, $q_2$, $q_3$?\\
\vspace{0.2cm}
\begin{columns}
\begin{column}{0.60\textwidth}
\begin{center}
\includegraphics[width=0.85\textwidth]{./images/schematics/work_3_charges.png}\\
\end{center}
\end{column}
\begin{column}{0.40\textwidth}
The question now becomes:\\
\vspace{0.3cm}
{\bf How much work is needed to assemble}
(or, how much potential energy is stored in)
{\bf a system of 3 charges?}\\
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
\begin{itemize}
\item To assemble a system of 3 charges, I need to add a charge $q_3$ to a system of 2 charges $q_1$ and $q_2$.
\vspace{0.2cm}
\item We already know how much work is needed to bring the first 2 charges together
or, equivalently, what is the electrostatic potential energy stored in this system.
\vspace{0.2cm}
\item If $q_1$ is brought at position $\vec{r}_1$ and $q_2$ at position $\vec{r}_2$,
the energy stored in the system is:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}_{12}|}
\end{equation*}
where $|\vec{r}_{12}| = |\vec{r}_1 - \vec{r}_2|$ is the distance between $q_1$ and $q_2$.\\
\vspace{0.2cm}
{\it (Here, I changed the notation slightly ($r_0 \rightarrow |\vec{r}_{12}|$)
to help me generalise the result obtained previously for 2 charges.)}
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
So, the problem is reduced to finding out {\bf how much work is needed
to add the charge $q_3$ to the system of $q_1$ and $q_2$}.\\
\vspace{0.2cm}
The superposition principle applies
(the total force on a charge due to an array of other charges is the vector sum of the individual forces):
\begin{equation*}
\vec{F} = \sum_{i} \vec{F}_{i}
\end{equation*}
So, the total field force $\vec{F}_{3}$ exerted on $q_3$ is:
\begin{equation*}
\vec{F}_{3} = \vec{F}_{31} + \vec{F}_{32}
\end{equation*}
where $\vec{F}_{31}$ ($\vec{F}_{32}$) is the force exerted on $q_3$ due to $q_1$ ($q_2$).\\
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
\vspace{0.2cm}
Therefore, the work that I need to do against the action of the field (i.e. against $\vec{F}_{3}$) is:
\begin{equation*}
W_{prof} = \int \vec{F}_{prof} \cdot d\vec{\ell}
= - \int \vec{F}_{3} \cdot d\vec{\ell}
= - \int \vec{F}_{31} \cdot d\vec{\ell} - \int \vec{F}_{32} \cdot d\vec{\ell} \Rightarrow
\end{equation*}
\begin{equation*}
W_{prof} = W_{prof;1} + W_{prof;2}
\end{equation*}
\vspace{0.3cm}
What this tells us is that, in order to bring $q_3$ at position $\vec{r}_3$,
after $q_1$ was brought at position $\vec{r}_1$ and $q_2$ at $\vec{r}_2$,
I need to do work which is the sum of:\\
\vspace{0.1cm}
\begin{itemize}
\item the work I would need to do if only $q_1$ was in place, and
\item the work I would need to do if only $q_2$ was in place.
\end{itemize}
{\bf My 3-charge problem is reduced to a number of 2-charge problems} (for which I know the solutions).
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
So the previous observation allows us to calculate the work
(or total potential energy) {\bf by considering all possible sub-systems of 2 charges}.\\
\begin{columns}
\begin{column}{0.55\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/work_3_charges_with_distances.png}\\
\end{center}
\end{column}
\begin{column}{0.45\textwidth}
How many distinct sub-systems of 2 charges are there in the system of 3 charges?\\
\vspace{0.3cm}
The obvious answer is 3:
\begin{itemize}
{
\item ($q_1$, $q_2$) separated by distance $|\vec{r}_{12}|$,
\item ($q_1$, $q_3$) separated by distance $|\vec{r}_{13}|$, and
\item ($q_2$, $q_3$) separated by distance $|\vec{r}_{23}|$.\\
}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Generalisation for 3 charges}
Therefore, the work I need to do to assemble
(and, consequently the total potential energy stored in)
the system of 3 charges is:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0 |\vec{r}_{12}|} +
\frac{q_1 q_3}{4\pi\epsilon_0 |\vec{r}_{13}|} +
\frac{q_2 q_3}{4\pi\epsilon_0 |\vec{r}_{23}|}
\end{equation*}
Here, I made no assumption about the charge signs:
\begin{itemize}
{\small
\item They can be anything, in any combination (+++, ++-, +-+, -++, ...)
\item For some of the pairs above I may need to do positive work, while for others I may need to do negative work.
\item The total work I need to do is the algebraic sum.
\item The total work may have either sign, depending on which terms dominate.
}
\end{itemize}
\vspace{0.4cm}
{\bf What to remember}: \\
My 3-charge problem was reduced to a number of 2-charge problems. \\
Each pair contributes a $\frac{q_i q_j}{4\pi \epsilon_0 |\vec{r}_{ij}|}$ term to the total potential energy.\\
\end{frame}
%
%
%
\begin{frame}{Generalisation for N charges}
We can generalise our result for a {\bf system of N charges $q_1$, $q_2$, $q_3$,..., $q_N$}.\\
\vspace{0.2cm}
There is a clear recipe for calculating the total potential energy:
\begin{itemize}
\item Find all distinct pairs of charges.
\item Every distinct pair will contribute with a $\frac{q_i q_j}{4\pi \epsilon_0 |\vec{r}_{ij}|}$ term.\\
\end{itemize}
\vspace{0.2cm}
Therefore the total potential energy can be written as:
\begin{equation*}
U = {\color{red} \sum_{all\; pairs}} \frac{q_i q_j}{4\pi \epsilon_0 |\vec{r}_{ij}|}
\end{equation*}
\vspace{0.2cm}
The question now becomes {\bf how to enumerate all possible pairs}.
\end{frame}
\vspace{0.2cm}
%
%
%
\begin{frame}{Generalisation for N charges}
{\bf How many pairs are there in the system of N charges?} \\
\vspace{0.2cm}
The number of groups of $k$ items we can select from a collection of $n$ items ($k<=n$),
if the order of the selection does not matter, is given by the {\bf Binomial Coefficient}:
\begin{equation*}
\left(
\begin{array}{c}
n \\
k
\end{array}
\right) =
\frac{n!}{k!(n-k)!} =
\frac{n(n-1)...(n-k+1)}{k(k-1)...1}
\end{equation*}
For example:
\begin{itemize}
\item for N = 4 charges, the numbers of pairs is
$\left(
\begin{array}{c}
4 \\
2
\end{array}
\right) = 6$
\item for N = 10 charges, the numbers of pairs is
$\left(
\begin{array}{c}
10 \\
2
\end{array}
\right) = 45$
\end{itemize}
We need a way to take all pairs into account systematically
{\bf so that we do not neglect or double-count terms}.
\end{frame}
%
%
%
\begin{frame}{Generalisation for N charges}
Let's think about {\bf a systematic procedure for forming pairs}:\\
\vspace{0.2cm}
\begin{itemize}
\item We {\bf start with charge $q_1$} and we pair it with all charges.\\
\vspace{0.2cm}
The pairs are {\color{red}($\cancel{q_1,q_1}$), ($q_1,q_2$), ($q_1,q_3$),..., ($q_1,q_N$)}.\\
\vspace{0.2cm}
\begin{itemize}
\item We do not include "self-energy" terms
(i.e. we don't consider the terms obtained by pairing each charge with "itself")
so we neglect ($q_1,q_1$).
\end{itemize}
\vspace{0.3cm}
\item Let's {\bf move to charge $q_2$} and pair it with all charges.\\
\vspace{0.2cm}
The new pairs are {\color{red}($\cancel{q_2,q_1}$),($\cancel{q_2,q_2}$),($q_2,q_3$),...,($q_2,q_N$)}.
\vspace{0.2cm}
\begin{itemize}
\item As before, we don't include the self-energy term ($q_2,q_2$).
\item But we also neglect ($q_2,q_1$). This is the same as ($q_1,q_2$) that was already taken into account.
\end{itemize}
\end{itemize}
\vspace{0.3cm}
You probably start to see the pattern here.
\end{frame}
%
%
%
\begin{frame}{Generalisation for N charges}
To take into account all distinct pairs, we sum over the charges $q_i$ and, for each $q_i$,
we sum over the charges $q_j$ but with j starting from i+1 (not from 1):
\begin{equation*}
U = {\color{red} \sum_{i=1} \sum_{j=i+1} } \frac{q_i q_j}{4\pi\epsilon_0 |\vec{r}_{ij}|}
\end{equation*}
\vspace{0.2cm}
We need to be {\bf careful towards the end of the double sum}:
\begin{itemize}
\item If i=N-1 (the last but one charge), then there is only one pair
left to be formed with j=N: {\color{red} ($q_{N-1}$, $q_N$)}.
\item So my double sum {\bf ends when i=N-1 and j=N}.
\end{itemize}
\vspace{0.2cm}
Therefore, the expression for the total potential energy of a system of N charges becomes:
\begin{equation*}
U = {\color{red}\sum_{i=1}^{N-1} \sum_{j=i+1}^{N}} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Generalisation for N charges}
The table below shows all $q_{i}q_{j}$ terms we included (\ck).
We {\bf can re-write the sum in a more symmetric way}.
\begin{columns}
\begin{column}{0.63\textwidth}
\begin{center}
{\scriptsize
\begin{table}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline
& & \multicolumn{8}{c|}{\bf j}\\
& & $q_1$ & $q_2$ & $q_3$ & $q_4$ & $q_5$ & ... & $q_{N-1}$ & $q_N$ \\
\hline
\multirow{8}{*}{\bf i}
& $q_1$ & - & \ck & \ck & \ck & \ck & ... & \ck & \ck \\
& $q_2$ & - & - & \ck & \ck & \ck & ... & \ck & \ck \\
& $q_3$ & - & - & - & \ck & \ck & ... & \ck & \ck \\
& $q_4$ & - & - & - & - & \ck & ... & \ck & \ck \\
& $q_5$ & - & - & - & - & - & ... & \ck & \ck \\
& ... & ... & ... & ... & ... & ... & ... & ... & ... \\
& ... & ... & ... & ... & ... & ... & ... & ... & ... \\
& $q_{N-1}$ & - & - & - & - & - & ... & - & \ck \\
& $q_N$ & - & - & - & - & - & ... & - & - \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\end{column}
\begin{column}{0.37\textwidth}
\begin{itemize}
{\small
\item What happens if I just sum up over all charges, without the $j>i$ condition,
excluding only the self-terms?
\item Obviously, I {\bf count each pair twice}:
E.g, I consider both {\color{red}($q_1,q_2$)} and {\color{red}($q_2,q_1$)}.
}
\end{itemize}
\end{column}
\end{columns}
\vspace{0.2cm}
So I can just rewrite the sum as:
\begin{equation*}
U = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|} {\color{blue} \;\; \rightarrow \;\;}
{\color{red} \frac{1}{2}} \sum_{{\color{red}i,j=1;i{\ne}j}}^{N} \frac{q_i q_j} {4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Generalisation for continuous charge distributions}
We will now make the {\bf leap from discrete to continuous distributions of charge}
characterised by a volume charge density $\rho(\vec{r})$.
\begin{columns}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/work_n_charges.png}\\
\end{center}
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/schematics/work_continuous_distribution.png}\\
\end{center}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Generalisation for continuous charge distributions}
Our starting point, is the result obtained for N charges:
\begin{equation*}
U = \frac{1}{2} \sum_{i,j=1;i{\ne}j}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
%If $\rho(\vec{r})$ is the amount of charge per unit volume, the amount of charge contained
%within a small volume $d\tau$ around the position $\vec{r}$ is $\rho(\vec{r}) d\tau$.
This result can be readily adapted for the continuous case
by making the following substitutions:
\begin{itemize}
\item $q_{i} \rightarrow dq(\vec{r}) = \rho(\vec{r}) d\tau$
\item $q_{j} \rightarrow dq(\vec{r^{\prime}}) = \rho(\vec{r^{\prime}}) d\tau^{\prime}$
\item $|\vec{r}_{ij}| \rightarrow |\vec{r} - \vec{r^{\prime}}|$
\item $\sum \rightarrow \int$
\end{itemize}
The electrostatic potential energy for a continuous charge distribution characterised
by density $\rho$ can be written as:
\begin{equation*}
U = \frac{1}{2} \int_{vol} d\tau \int_{vol} d\tau^{\prime}
\frac{\rho(\vec{r}) \rho(\vec{r^{\prime}})}{4\pi\epsilon_0|\vec{r} - \vec{r^{\prime}}|}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Summary of basic results}
Potential energy stored in a:
\begin{itemize}
\item {\bf system of 2 charges}:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|}
\end{equation*}
\item {\bf system of 3 charges}:
\begin{equation*}
U = \frac{q_1 q_2}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{12}|} +
\frac{q_1 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{13}|} +
\frac{q_2 q_3}{4\pi\epsilon_0} \frac{1}{|\vec{r}_{23}|}
\end{equation*}
\item {\bf system of N charges}:
\begin{equation*}
U = \frac{1}{2} \sum_{i,j=1;i{\ne}j}^{N} \frac{q_i q_j}{4\pi\epsilon_0|\vec{r}_{ij}|}
\end{equation*}
\item {\bf continuous charge distribution} (with density $\rho$ over a volume $\tau$):
\begin{equation*}
U = \frac{1}{2} \int_{vol} d\tau \int_{vol} d\tau^{\prime}
\frac{\rho(\vec{r}) \rho(\vec{r^{\prime}})}{4\pi\epsilon_0|\vec{r} - \vec{r^{\prime}}|}
\end{equation*}
\end{itemize}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Potential of 4 charges on square }
\begin{blockexmplque}{Question}
\begin{columns}
\begin{column}{0.25\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect2_array_of_4_charges.png}
\end{center}
\end{column}
\begin{column}{0.75\textwidth}
Four charges each of magnitude q are located at the four corners of a
square of side d such that like charges occupy the corners across
the diagonals. \\
Calculate the work done in assembling these charges.
\end{column}
\end{columns}
\end{blockexmplque}
\vspace{0.1cm}
Work done is
$\displaystyle W = U_{12} + U_{23} + U_{34} + U_{41} + U_{13} + U_{24}$
where $\displaystyle U_{ij} = \frac{q_i q_j}{4\pi \epsilon_0 r_{ij}}$
Numbering charges clock-wisely from top left one,
so that charges 1 and 3 are positive and 2 and 4 negative:
\begin{equation*}
W = \frac{1}{4\pi \epsilon_0}
\bigg\{
- \frac{q^2}{d} - \frac{q^2}{d} - \frac{q^2}{d} - \frac{q^2}{d} + \frac{q^2}{\sqrt{2}d} + \frac{q^2}{\sqrt{2}d}
\bigg\} =
-\frac{q^2}{4\pi \epsilon_0 d} \Big( 4 - \sqrt{2} \Big)
\end{equation*}
\end{frame}