-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture05_summary.tex
96 lines (71 loc) · 2.86 KB
/
slides_lecture05_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
\renewcommand{\summarizedlecture}{5 }
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
\begin{itemize}
\item
An {\bf electric current is a flow of electric charge.}
It is represented by the amount of charge passing though per unit time.
\begin{equation*}
I = \frac{dQ}{dt}
\end{equation*}
In SI, the unit of the electric current is the {\bf Ampere (A)}.
\item
The current density $\vec{j}$ is the {\bf current per unit area of cross-section}:
\begin{equation*}
\vec{j} = n q \vec{u}_{d}
\end{equation*}
where n is the charge carrier density and $\vec{u}_{d}$ their average velocity.
\item
In general:
\begin{equation*}
\vec{j} = \sigma \vec{E}
\end{equation*}
where $\sigma$ is the {\bf conductivity} of the material (SI unit: $1/(\Omega \cdot m)$).
The inverse quantity $\rho = 1/\sigma$ is called {\bf resistivity}.
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item Magnetic and electric phenomena have a common origin.\\
Remember the empirical evidence:
\begin{itemize}
\item Electric currents generate magnetic fields!
\item Moving magnetic fields generate electric currents!
\item There are magnetic forces between electric currents!
\end{itemize}
\item The magnetic field (a vector field) is the magnetic effect of electric currents and magnetic materials (SI unit: {\bf Tesla (T)})
\item The magnetic force on an electric charge q moving with velocity $\vec{u}$ in a magnetic field $\vec{B}$ is given by:
$\vec{F} = q \vec{u} \times \vec{B}$
\item Consequently, the magnetic force on a current is
$\vec{F} = I \int_{L} d\vec{\ell} \times \vec{B}$
\item Magnetic forces do no work on electric charges.
\item In the presence of both a magnetic field $\vec{B}$ and an electric field $\vec{E}$,
the total (so-called Lorentz) force on charge q is:
$\vec{F} = q \Big( \vec{E} + \vec{u} \times \vec{B} \Big)$
\end{itemize}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle (cont'd)}
\begin{itemize}
\item Biot-Savart law (expresses $\vec{B}$ in terms of the current I):
\begin{equation*}
\vec{B} = \int_{L} d\vec{B}
= \frac{\mu_0I}{4\pi} \int_{L} \frac{d\vec{\ell} \times \vec{r}}{r^3}
\end{equation*}
where the integral is over the elements $d\vec{\ell}$ along the conductor, and $\vec{r}$
is the distance from $d\vec{\ell}$ to the point where we want to know the field.
\vspace{0.2cm}
\item Biot-Savart in action: Magnetic field around a wire with current I:
\begin{equation*}
\vec{B}(\vec{r}) = \frac{\mu_0I}{2\pi \rho} \hat\phi
\end{equation*}
where $\rho$ is the distance from the wire and $\hat\phi$ the azimuthal unit vector.
\end{itemize}
\end{frame}