-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture08_optional.tex
796 lines (625 loc) · 21.8 KB
/
slides_lecture08_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Wire falling in magnetic field}
\begin{blockexmplque}{Question}
\begin{minipage}[l]{0.22\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/problems/lect08_wire_falls_in_b_field}
\end{center}
\end{minipage}
\begin{minipage}[r]{0.75\textwidth}
A long straight wire parallel to the $y$ axis lies in a uniform magnetic
field $\vec{B} = B \hat{x}$, as shown in the figure on the left.
The mass per unit length and resistance per unit length of the wire
are $\lambda_{m}$ and $\lambda_{r}$ respectively.\\
\end{minipage}
\vspace{0.1cm}
The wire may be considered to extend to the edges of the field,
where the ends are connected to one another by a massless perfect conductor
which lies outside the field. Fringing effects can be neglected.\\
The wire is allowed to fall under the influence of gravity $(\vec{g} = -g \hat{z})$.\\
Find:
\begin{itemize}
\item the electromotive force developed across the wire,
\item the current flowing along the wire,
\item the magnetic force acting on the wire, and
\item the terminal velocity of the wire as it falls through the magnetic field.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire falling in magnetic field}
As the wire falls within the magnetic field with a velocity $u$,
the EMF $\varepsilon$ developed across the wire is given by:
\begin{equation*}
\varepsilon = \int (\vec{u} \times \vec{B}) \cdot d\vec{\ell}
= uB\ell
\end{equation*}
where $\ell$ is the length of the wire
(which is fully within the magnetic field).
The resistance $R$ of the wire of length $\ell$ is:
\begin{equation*}
R = \lambda_{r} \ell
\end{equation*}
Therefore, the current that will flow in the wire is given by:
\begin{equation*}
I = \frac{\varepsilon}{R}
= \frac{uB\cancel{\ell}}{\lambda_{r}\cancel{\ell}}
= \frac{uB}{\lambda_{r}}
\end{equation*}
This current is flowing towards the $-\hat{y}$ direction.
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire falling in magnetic field}
The force exerted on the current-carrying wire because of the
magnetic field is:
\begin{equation*}
\vec{F}_{B} =
I \int d\vec{\ell} \times \vec{B}
\end{equation*}
Substituting $I$ from the previous expression, and considering
$d\vec{\ell}$ to be in the direction of the current, we have:
\begin{equation*}
\vec{F}_{B} =
\frac{uB}{\lambda_{r}} \int \Big( dy(-\hat{y})\Big) \times \Big( B \hat{x}\Big) =
\frac{uB^2}{\lambda_{r}} \Big(\int dy \Big) \Big(- \hat{y}) \times \hat{x}\Big) \Rightarrow
\end{equation*}
\begin{equation*}
\vec{F}_{B} =
\frac{uB^2\ell}{\lambda_{r}} \hat{z}
\end{equation*}
This force will oppose the downwards gravitational force $\vec{F}_{g}$.
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire falling in magnetic field}
The wire carries a mass given by:
\begin{equation*}
m = \lambda_{m} \ell
\end{equation*}
and, therefore, the force of gravity is:
\begin{equation*}
\vec{F}_{g} = m \vec{g} = - \lambda_{m} \ell g \hat{z}
\end{equation*}
The wire will reach its terminal velocity $u^{\prime}$ when the
two forces cancel each other out exactly.
Therefore, $u^{\prime}$ is given by the condition:
\begin{equation*}
\frac{u^{\prime} B^2 \cancel{\ell}}{\lambda_{r}} = \lambda_{m} \cancel{\ell} g
\end{equation*}
Solving for $u^{\prime}$ we find:
\begin{equation*}
u^{\prime} = \frac{\lambda_{r} \lambda_{m} g}{B^2}
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Displacement current in capacitor}
\begin{blockexmplque}{Question}
At what rate must the potential difference between the plates
of a parallel plate capacitor with a 2.0 $\mu$F capacitance
be changed to produce a displacement current of 1.5 A?
\end{blockexmplque}
Let the area plate be A and the plate separation be d.
The displacement current $I_{d}$ is:
\begin{equation*}
I_{d} = \epsilon_0 \frac{d\Phi_{E}}{dt}
\xRightarrow{\Phi_{E} = EA}
I_{d} = \epsilon_0 \frac{d}{dt} (EA)
= \epsilon_0 A \frac{dE}{dt}
\end{equation*}
\begin{equation*}
\xRightarrow{E = V/d}
I_{d} = \epsilon_0 A \frac{d}{dt} (\frac{V}{d})
= \frac{\epsilon_0 A}{d} \frac{dV}{dt}
\xRightarrow{C = \epsilon_0 A/d}
I_{d} = C \frac{dV}{dt}
\end{equation*}
\begin{equation*}
\Rightarrow
\frac{dV}{dt} = \frac{I_{d}}{C}
= \frac{15.0 \; A}{2 \times 10^{-6} \; F}
= 7.5 \times 10^{5} \; V/s
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Induced current in rectangular wire loop}
\begin{blockexmplque}{Question}
The figure below shows a wire that forms a rectangle (W = 20 cm, H = 30 cm)
and has a resistance of 5.0 m$\Omega$. Its interior is split into three
equal areas, with magnetic fields $\vec{B}_{1}$, $\vec{B}_{2}$ and $\vec{B}_{3}$.
The fields are uniform within each region and directly
out of or into the page as indicated.
The graph below gives the change in the z components (B$_{z}$)
of the three fields with time t;
the vertical axis scale is set by
B$_{s}$ = 4.0 $\mu$T and B$_{b}$ = 2.5B$_{s}$
and the horizontal axis scale is set by t$_{s}$ = 2.0 s.
\begin{minipage}[r]{0.30\textwidth}
What are the
\begin{itemize}
\item magnitude, and
\item direction of the current induced in the wire?
\end{itemize}
\end{minipage}
\begin{minipage}[l]{0.30\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect08_rectangular_wire_3bfield_regions}\\
\end{center}
\end{minipage}
\begin{minipage}[l]{0.38\textwidth}
\begin{center}
\includegraphics[width=0.95\textwidth]{./images/problems/lect08_rectangular_wire_3bfield_regions_Bz}\\
\end{center}
\end{minipage}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Induced current in rectangular wire loop}
\vspace{-0.2cm}
The induced emf is:
\begin{equation*}
\varepsilon = - \sum_{i} \frac{d\Phi_{B;i}}{dt}
\end{equation*}
If the surface vector of the loop is collinear with
$\vec{B}_1$ and $\vec{B}_2$, the flux due to $\vec{B}_1$ and $\vec{B}_2$
is positive, whereas the flux due to $\vec{B}_3$ is negative. Therefore:
\begin{equation*}
\varepsilon = \frac{1}{3} H W
\Big\{ - \frac{dB_1}{dt} - \frac{dB_2}{dt} + \frac{dB_3}{dt} \Big\} =
\end{equation*}
\begin{equation*}
\frac{(0.30 \; m) (0.20 \; m)}{3}
\Big\{ - \frac{4 \times 10^{-6} \; T}{2.0 \; s}
- \frac{2 \times 10^{-6} \; T}{2.0 \; s}
+ \frac{10 \times 10^{-6} \; T}{2.0 \; s} \Big\}
= 4 \times 10^{-8} \; V
\end{equation*}
The plus sign means that the emf is dominated by changes in $\vec{B}_3$.
The current induced by $\varepsilon$ is:
\begin{equation*}
I = \frac{|\varepsilon|}{R} = \frac{4 \times 10^{-8} \; V}{5 \times 10^{-3} \; \Omega}
\approx 8 \; {\mu}A
\end{equation*}
By Lenz's law, the induced emf (and current) resist to these changes in the magnetic flux.
Therefore, the direction of the current is counter-clockwise.
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Loop in uniform time-dependent $\vec{B}$}
\begin{blockexmplque}{Question}
\begin{minipage}[l]{0.30\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect08_square_loop_with_emf_partially_within_bfield}\\
\end{center}
\end{minipage}
\begin{minipage}[r]{0.69\textwidth}
A square wire loop with 2.00 m sides is perpendicular to a uniform
magnetic field, with half the area of the loop in the field,
as shown in the figure on the left.
The loop contains an ideal battery with emf $\varepsilon_{bat}$ = 20 V.
If the magnitude of the field varies with time according
to $B$ = 0.0420 - 0.870$t$,
with $B$ in Teslas and $t$ in seconds, what are the
\begin{itemize}
\item net emf in the circuit, and
\item the direction of the (net) emf around the loop?
\end{itemize}
\end{minipage}
\end{blockexmplque}
Let $L$ be the length of a side of the square circuit.
Then the magnetic flux through the circuit is:
\begin{equation*}
\Phi_B = \frac{1}{2} L^2 B
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Loop in uniform time-dependent $\vec{B}$}
The induced emf is:
\begin{equation*}
\varepsilon_{induced} = - \frac{d\Phi_{B}}{dt} = - \frac{1}{2} L^2 \frac{dB}{dt}
\end{equation*}
The rate of change of the given field is:
\begin{equation*}
\frac{dB}{dt} = \frac{d}{dt} (0.0420 - 0.870t) = -0.870 \; T/s
\end{equation*}
Therefore, the induced emf is:
\begin{equation*}
\varepsilon_{induced} = - \frac{1}{2} (2.0 \; m)^2 (-0.870 \; T/s) = 1.74 \; V
\end{equation*}
The magnetic field is out of the page and decreasing so the induced emf is
counterclockwise around the circuit, in the same direction
as the emf of the battery. The total emf is:
\begin{equation*}
\varepsilon_{total} =
\varepsilon_{induced} + \varepsilon_{battery} = 1.74 \; V + 20 \; V = 21.74 \; V
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Loop in non-uniform time-dependent $\vec{B}$}
\begin{blockexmplque}{Question}
\begin{minipage}[l]{0.34\textwidth}
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/problems/lect08_square_loop_in_nonuniform_bfield}\\
\end{center}
\end{minipage}
\begin{minipage}[r]{0.65\textwidth}
As seen in the figure on the left, a square loop of wire has sides of
length 2.0 cm. A magnetic field is directed out of the page; its magnitude
is given by $B$ = 4.0$t^2$$y$, where $B$ is in Teslas, $t$ is in seconds,
and $y$ is in meters.
At $t$ = 2.5 s, what are the
\begin{itemize}
\item magnitude, and
\item direction of the emf induced in the loop?
\end{itemize}
\end{minipage}
\end{blockexmplque}
Consider a (thin) strip of area of height $dy$ and width $\ell$ = 0.020 m.
The strip is located at position $y$ (0 $<$ $y$ $<$ $\ell$).
The magnetic field in that thin strip is uniform and, therefore,
the magnetic flux through that strip is:
\begin{equation*}
d\Phi_{B} = B dA = (4 t^2 y)(\ell dy)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Loop in non-uniform time-dependent $\vec{B}$}
The total flux through the square loop is:
\begin{equation*}
\Phi_{B} = \int d\Phi_{B} = \int_{0}^{\ell} 4 t^2 y \ell dy
= 4 t^2 \ell \int_{0}^{\ell} y dy
= 2 t^2 \ell^3
\end{equation*}
Thus, Faraday's law yields:
\begin{equation*}
\varepsilon = - \frac{d\Phi_{B}}{dt} = - 4 t \ell^3
\end{equation*}
At $t$ = 2.5 s, the magnitude of the emf is:
\begin{equation*}
|\varepsilon| = 4 (2.5 \; s) (0.02 \; m)^3 = 8.0 \times 10^{-5} \; V
\end{equation*}
The emf direction is clockwise, by Lenz's law.
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Charging a parallel-plate capacitor}
\begin{blockexmplque}{Question}
A parallel-plate capacitor has square plates of edge length $L$ = 1.0 m.
A current of 2.0 A charges the capacitor, producing a uniform electric
field $\vec{E}$ between the plates, with $\vec{E}$ perpendicular to the plates.\\
\vspace{0.2cm}
\begin{minipage}[l]{0.19\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect08_parallel_plate_capacitor_edge_view}\\
\end{center}
\end{minipage}
\begin{minipage}[l]{0.19\textwidth}
\begin{center}
\includegraphics[width=0.98\textwidth]{./images/problems/lect08_parallel_plate_capacitor_top_view}\\
\end{center}
\end{minipage}
\begin{minipage}[r]{0.60\textwidth}
\begin{itemize}
\item What is the displacement current $I_{d}$
through the region between the plates?
\item What is $dE/dt$ in this region?
\item What is the displacement current encircled
by the square dashed path of edge length $d$ = 0.50 m?
\item What is $\oint \vec{B} \cdot d\vec{\ell}$
around this square dashed path?
\end{itemize}
\end{minipage}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Charging a parallel-plate capacitor}
As the current $I$ charges the capacitor, the electric field between
the plates of the capacitor is changing.
This produces a displacement current $I_{d}$ bet- ween the plates,
which is given by:
\begin{equation*}
I_d = \epsilon_0 \frac{d\Phi_{E}}{dt}
\end{equation*}
Let $A$ be the area of a plate, $d$ the plate separation,
and $E$ the magnitude of the electric field between the plates.
$E$ is uniform, and it is given by:
\begin{equation*}
E = \frac{V}{d}
\end{equation*}
where $V$ is the potential difference across the plates.
The current into the positive plate of the capacitor is
\begin{equation*}
I = \frac{dQ}{dt} = \frac{d}{dt}(CV) = C \frac{dV}{dt}
= \frac{\epsilon_0 A}{d} \frac{d(Ed)}{dt}
= \epsilon_0 A \frac{dE}{dt} = \epsilon_0 \frac{d\Phi_{E}}{dt} = I_{d}
\end{equation*}
At any time, the conduction current $I$ in the wires equals
the displacement current $I_{d}$ in the gap between the plates,
and thus $I_{d}$ = 2.0 A.
\end{frame}
%
%
%
\begin{frame}{Worked example: Charging a parallel-plate capacitor}
The rate of change of the electic field is:
\begin{equation*}
I_d = \epsilon_0 A \frac{dE}{dt} \Rightarrow
\frac{dE}{dt} = \frac{I_d}{\epsilon_0 A} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{dE}{dt} = \frac{2.0 \; A}{(8.85 \times 10^{-12} \; F/m)(1.0 \; m^2)}
= 2/3 \times 10^{11} \frac{V}{m \cdot s}
\end{equation*}
The displacement current $I_d^\prime$ through the indicated path is
\begin{equation*}
I_d^\prime = I_d \frac{d^2}{L^2}
= (2.0 \; A) \frac{(0.5 \; m)^2}{(1.0 \; m)^2}
= (2.0 \; A) \frac{1}{4} = 0.5 \; A
\end{equation*}
From Ampere's law, the integral of the magnetic field around the indicated path is
\begin{equation*}
\oint \vec{B} \cdot d\vec{\ell}
= \mu_0 I_d^\prime
= (1.26 \times 10^{-6} \; T \cdot m / A) (0.5 \; A)
= 6.3 \times 10^{-7} \; T \cdot m
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Charging a parallel-plate capacitor 2}
\begin{blockexmplque}{Question}
A parallel-plate capacitor with circular plates is being charged.
Consider a circular loop centred on the central axis and located between
the plates. If the loop radius of 3 cm is greater than the plate radius,
what is the displacement current between the plates when the magnetic
field along the loop has magnitude 2 $\mu$T?
\end{blockexmplque}
From Ampere's law, the line integral of $\vec{B}$ along the
circular loop $L$ is
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 (I + I_D)
\end{equation*}
where $I$ ($I_D$) is the conduction (displacement)
current through a surface that has the
circular loop $L$ as its boundary.
\end{frame}
%
%
%
\begin{frame}{Worked example: Charging a parallel-plate capacitor 2}
Between the capacitor plates, $I=0$.
Therefore:
\begin{equation*}
I_D = \frac{1}{\mu_0} \oint_{L} \vec{B} \cdot d\vec{\ell}
\end{equation*}
From the cylindrical symmetry of the problem ($B$ is constant along $L$,
and $\vec{B}$ is parallel to $d\vec{\ell}$), we find:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = 2\pi r B
\end{equation*}
Finally:
\begin{equation*}
I_D = \frac{2\pi r B}{\mu_0} \Rightarrow
\end{equation*}
\begin{equation*}
I_D =
\frac{2\pi(0.03\;m)(2 \times 10^{-6} \; T)}{4\pi \times 10^{-7}\; Tm/A} =
0.3 \; A
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
\begin{blockexmplque}{Question}
A square loop of conducting wire, with side length $\alpha$ and total resistance $R$,
lies a distance $\alpha$ from an infinite straight wire that carries current $I$,\\
as shown in the figure below.
\begin{center}
\includegraphics[width=0.30\textwidth]{./images/problems/lect08_square_loop_next_to_straight_wire.png}
\end{center}
This current changes as a function of time as:
\begin{equation*}
I(t) =
\left\{
\begin{array}{ c l }
I_0 (1-bt), & \quad \textrm{if } 0 \leq t \leq \frac{1}{b} \\
0 & \quad \textrm{otherwise}
\end{array}
\right.
\end{equation*}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
\begin{blockexmplque}{Question (cont'd)}
\begin{itemize}
\item
Calculate the magnetic flux through the square loop.
\vspace{0.2cm}
\item
Calculate the total charge passing through a given point on the wire
that forms the loop (due to the current induced in the loop), during the time
that the current flows in the infinitely long straight wire.
\vspace{0.2cm}
\item
In what direction does the induced current in the square loop flow?
\end{itemize}
\end{blockexmplque}
\vspace{0.3cm}
The infinite straight wire that carries current $I$
produces an azimuthal field around it, with magnitude:
\begin{equation*}
|\vec{B}| = \frac{\mu_0 I}{2\pi r}
\end{equation*}
where $r$ is the distance from the wire.
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
Taking the positive $z$ axis to point out of the page,
the field on the plane of the square loop can be written
in vector form as:
\begin{equation*}
\vec{B} = \frac{\mu_0 I}{2\pi r} \hat{z}
\end{equation*}
The magnetic flux through the square loop is given by
\begin{equation*}
\Phi = \int_{loop} \vec{B} \cdot d\vec{S}
\end{equation*}
If we take $d\vec{S}$ to point in the positive $z$ direction
($d\vec{S} = dS \hat{z}$), and substitute the above expression for $\vec{B}$,
the expression for $\Phi$ becomes:
\begin{equation*}
\Phi = \frac{\mu_0 I}{2\pi} \int_{loop} (\frac{1}{r} \hat{z}) \cdot (dS \hat{z})
= \frac{\mu_0 I}{2\pi} \int_{loop} \frac{dS}{r}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
If $y$ is the direction perpendicular to the infinite straight wire, on
the plane of the square loop, and taking the origin of a cartesian
coordinate system to be on the straight wire, we can write $r=y$,
and $dS = \alpha dy$.\\
\vspace{0.2cm}
Therefore, the above expression for $\Phi$ can be written as:
\begin{equation*}
\Phi = \frac{\mu_0 I \alpha}{2\pi} \int_{\alpha}^{2\alpha} \frac{dy}{y} \Rightarrow
\end{equation*}
\begin{equation*}
\Phi = \frac{\mu_0 I \alpha}{2\pi} ln(x)\Big\rvert_{\alpha}^{2\alpha}
= \frac{\mu_0 I \alpha}{2\pi} \Big(ln(2\alpha) - ln(\alpha)\Big)
= \frac{\mu_0 I \alpha ln2}{2\pi}
\end{equation*}
For $t \le 1/b$, $\Phi$ is given by:
\begin{equation*}
\Phi = \frac{\mu_0 I_0 \alpha ln2}{2\pi} (1-bt)
\end{equation*}
and it is zero at other times.
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
The emf $\varepsilon$ on the square loop is:
\begin{equation*}
\varepsilon = -\frac{d\Phi}{dt} = \frac{\mu_0 I_0 \alpha b ln2}{2\pi}
\end{equation*}
and, therefore, the current $I_{loop}$ is given by:
\begin{equation*}
I_{loop} = \frac{\varepsilon}{R} = \frac{\mu_0 I_0 \alpha b ln2}{2\pi R}
\end{equation*}
The total charge passing a given point in the loop, can be calculated
by integrating $I_{loop}$ over the entire time it has non-zero value:
\begin{equation*}
I_{loop} = \frac{dQ}{dt} \Rightarrow
Q_{tot} = \int_{0}^{1/b} I_{loop} dt
= \frac{\mu_0 I_0 \alpha b ln2}{2\pi R} \int_{0}^{1/b} dt
\end{equation*}
The above yields:
\begin{equation*}
Q_{tot} = \frac{\mu_0 I_0 \alpha ln2}{2\pi R}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop next to infinite straight wire}
In the area of the square loop, the magnetic field due to the infinite
wire is out of the page and it is decreasing.\\
\vspace{0.2cm}
The field of the induced current, which resists to the change in
magnetic flux, will have a direction that is also out of the page.\\
\vspace{0.2cm}
Therefore, the induced current will have a counterclockwise direction.
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------