-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture08_summary.tex
411 lines (338 loc) · 12 KB
/
slides_lecture08_summary.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
\renewcommand{\summarizedlecture}{8 }
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Conductors moving in a magnetic field)}
\begin{columns}
\begin{column}{0.50\textwidth}
We consider a conductor with length L moves with velocity $\vec{u}$ inside a
homogenous magnetic field $\vec{B}$, as shown on the right.
\end{column}
\begin{column}{0.50\textwidth}
\begin{center}
\includegraphics[width=0.90\textwidth]{./images/schematics/conductor_in_magnetic_field_induced_emf.png}\\
\end{center}
\end{column}
\end{columns}
\vspace{0.2cm}
Each electron in the conductor feels a magnetic force $\vec{F}_{M} = q \vec{u} \times \vec{B}$.\\
\vspace{0.1cm}
That magnetic force {\bf induces the build-up of charge}
which {\bf produces an electric field} $\vec{E}$:
Each electron feels an electric force $\vec{F}_{E} = q \vec{E}$.\\
\vspace{0.2cm}
The resulting {\bf electric force} $\vec{F}_{E}$ {\bf opposes the magnetic force} $\vec{F}_{M}$.\\
\vspace{0.2cm}
An electrical potential difference develops between the ends of the moving conductor,
which becomes a source of EMF:
\begin{equation*}
\mathcal{E} = \int_{L} \vec{E} \cdot d\vec{\ell} = \int_{L} \Big( \vec{u} \times \vec{B} \Big) \cdot d\vec{\ell}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Circuit moving in a magnetic field)}
A rectangular circuit moving through a region with magnetic field $\vec{B}$:
\begin{center}
\includegraphics[width=0.88\textwidth]{./images/schematics/circuit_moving_through_magnetic_field_all_3.png}
\end{center}
\begin{columns}
\begin{column}{0.55\textwidth}
In summary:
{\small
\setlength{\extrarowheight}{10pt}
\setlength{\arraycolsep}{5pt}
\begin{table}[H]
\begin{tabular}{|c||c|c|}
\hline
& $\displaystyle \oint_{L} \vec{E} \cdot d\vec{\ell}$ & $\displaystyle \frac{d\Phi_{M}}{dt}$\\
\hline
left & uBb & -uBb \\
centre & 0 & 0 \\
right & -uBb & uBb \\
\hline
\end{tabular}
\end{table}
}
\end{column}
\begin{column}{0.45\textwidth}
So, indeed, in all cases:
\begin{equation*}
\mathcal{E} = \oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d\Phi_{M}}{dt}
\end{equation*}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Faraday's observations)}
In 1831 Michael Faraday reported on a series of experiments.\\
\vspace{0.2cm}
A current flows in a wire loop when:
\vspace{0.1cm}
\begin{enumerate}[(a)]
{\small
\item the loop is pulled through a magnetic field,
\item the loop is at rest but the magnet moves in the opposite direction, and
\item both the loop and the magnet are at rest but the strength of the magnetic field is varied
}
\end{enumerate}
\begin{center}
\includegraphics[width=0.80\textwidth]{./images/schematics/faraday_law_schematic_with_notes.png}
\end{center}
This led Faraday to realize that:
\begin{center}
{\bf A time-varying magnetic field induces an electic field}
\end{center}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Faraday's law / Lenz's law)}
In all cases the {\bf motional EMF} is directly related
to the {\bf change of the magnetic flux $\Phi_{M}$ though the circuit}:\\
\vspace{0.1cm}
\begin{columns} [T]
\begin{column}{0.25\textwidth}
\includegraphics[width=0.98\textwidth]{./images/people/faraday.png}\\
{\tiny Michael Faraday (1791 - 1867).}
\end{column}
\begin{column}{0.75\textwidth}
\begin{center}
\begin{equation*}
\mathcal{E} = \oint_{L} \vec{E} \cdot d\vec{\ell} = - \frac{d\Phi_{M}}{dt}
\end{equation*}
\vspace{0.2cm}
This is the so-called {\bf Faraday's law}.
\end{center}
\end{column}
\end{columns}
\vspace{0.1cm}
\begin{columns}
\begin{column}{0.75\textwidth}
{\scriptsize
Lenz' law (1845): The EMF induced by a changing flux has a polarity
such that the current flowing gives rise to a flux which opposes the change of flux.\\
\vspace{0.1cm}
The minus sign is a consequence of the {\bf conservation of energy} and
of {\bf Newton's 3rd law} of motion: Induction is a an ``inertial reaction''.
The system develops a current which tries to maintain the flux constant.\\
}
\end{column}
\begin{column}{0.25\textwidth}
\includegraphics[width=0.83\textwidth]{./images/people/lenz.jpg}\\
{\tiny Heinrich Lenz (1804 - 1865).}
\end{column}
\end{columns}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Maxwell correction in Ampere's law)}
We also studied a case where Ampere's law led to paradoxical results.\\
\vspace{0.2cm}
We also saw that Ampere's law (as we knew it) was inconsistent with
the continuity equation (which expresses the local conservation of charge).\\
\vspace{0.2cm}
The problem of course was that we took a law from magnetostatics and
applied it in a different context (electrodynamics) where it is no longer valid.
\vspace{0.2cm}
Maxwell realised that all it takes to fix Ampere's law is to do the following substitution:
\begin{equation*}
\vec{j} \rightarrow
\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}
\end{equation*}
The term $\displaystyle \epsilon_0 \frac{\partial \vec{E}}{\partial t}$ is the
density of the so-called {\bf displacement current}.
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Maxwell's eqs for the dynamic case)}
Compared with what we had seen in the study of electrostatics and magnetostatics,
the study of time-dependent fields (electrodynamics) brought the following complication:\\
\vspace{0.1cm}
\begin{itemize}
\item {\bf Electric fields are produced} not only by electric charges,
but also {\bf by changing magnetic fields!}
\begin{equation*}
\vec{\nabla} \times \vec{E} = {\color{red} - \frac{\partial \vec{B}}{\partial t}}
\end{equation*}
\item {\bf Magnetic fields are produced} not only by electric currents,
but also {\bf by changing electric fields!}
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_{0} \Big( \vec{j} + {\color{red} \epsilon_0 \frac{\partial \vec{E}}{\partial t} } \Big)
\end{equation*}
\end{itemize}
{\small
The full list of Maxwell equations for the static and dynamic cases in vacuum is shown on the next slide.
Notice that all 4 equations are coupled in the dynamic case.\\
}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture revision (Maxwell's eqs. for the dynamic case)}
{\small
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Static case (in vacuum)}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Circuital law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = 0$ &
$\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
{\bf Gauss's law} (magn) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{B} \cdot d\vec{\ell} = \mu_{0} \int \vec{j} \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j}$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
\begin{center}
{
\begin{table}[H]
\begin{tabular}{|l|c|c|}
\hline
\multicolumn{3}{|l|} {
{\color{magenta}
{\bf Generalization of above for the dynamic case (in vacuum)}
}
}\\
\hline
{\bf Gauss's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau$ &
$\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
{\bf Faraday's law} &
$\displaystyle \oint \vec{E} \cdot d\vec{\ell} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$ \\
{\bf Gauss's law} (magn) &
$\displaystyle \oint \vec{B} \cdot d\vec{S} = 0$ &
$\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
{\bf Ampere's law} &
$\displaystyle \oint \vec{B} \cdot d\vec{\ell} =
\mu_{0} \int \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big) \cdot d\vec{S}$ &
$\displaystyle \vec{\nabla} \times \vec{B} =
\mu_{0} \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big)$ \\
\hline
\end{tabular}
\end{table}
}
\end{center}
}
\end{frame}
%
%
%
\begin{frame}{Lecture \summarizedlecture - \lecturesummarytitle}
Compared with what we had seen in the study of electrostatics and magnetostatics,
the study of time-dependent fields (electrodynamics) brought the following complication:\\
\vspace{0.1cm}
\begin{itemize}
\item {\bf Electric fields are produced} not only by electric charges,
but also {\bf by changing magnetic fields!}
\begin{equation*}
\vec{\nabla} \times \vec{E} = {\color{red} - \frac{\partial \vec{B}}{\partial t}}
\end{equation*}
\item {\bf Magnetic fields are produced} not only by electric currents,
but also {\bf by changing electric fields!}
\begin{equation*}
\vec{\nabla} \times \vec{B} = \mu_{0} \Big( \vec{j} + {\color{red} \epsilon_0 \frac{\partial \vec{E}}{\partial t} } \Big)
\end{equation*}
\end{itemize}
{\small
The full list of Maxwell equations for the static and dynamic cases in vacuum is shown on the next slide.
Notice that whereas the 2 equations involving $\vec{E}$ and the 2 equations involving $\vec{B}$ were decoupled in the static case,
all 4 equations are coupled in the dynamic case.\\
}
\end{frame}
% %
% %
% %
%
% \begin{frame}{Maxwell's equations for the static and dynamic cases}
%
% {\small
%
% \begin{center}
% {
% \begin{table}[H]
% \begin{tabular}{|l|c|c|}
% \hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Static case (in vacuum)}
% }
% }\\
% \hline
% {\bf Gauss's law} &
% $\displaystyle \oint \vec{E} d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau$ &
% $\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
%
% {\bf Circuital law} &
% $\displaystyle \oint \vec{E} d\vec{\ell} = 0$ &
% $\displaystyle \vec{\nabla} \times \vec{E} = 0$ \\
%
% no magn. monopoles' &
% $\displaystyle \oint \vec{B} d\vec{S} = 0$ &
% $\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
%
% {\bf Ampere's law} &
% $\displaystyle \oint \vec{B} d\vec{\ell} = \mu_{0} \int \vec{j} d\vec{S}$ &
% $\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \vec{j}$ \\
% \hline
% \end{tabular}
% \end{table}
% }
% \end{center}
%
%
% \begin{center}
% {
% \begin{table}[H]
% \begin{tabular}{|l|c|c|}
% \hline
% \multicolumn{3}{|l|} {
% {\color{magenta}
% {\bf Generalization of above for the dynamic case (in vacuum)}
% }
% }\\
% \hline
% {\bf Gauss's law} &
% $\displaystyle \oint \vec{E} d\vec{S} = \frac{1}{\epsilon_0} \int \rho d\tau$ &
% $\displaystyle \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ \\
%
% {\bf Circuital law} &
% $\displaystyle \oint \vec{E} d\vec{\ell} = -\frac{\partial}{\partial t} \int \vec{B} d\vec{S}$ &
% $\displaystyle \vec{\nabla} \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}$ \\
%
% no magn. monopoles &
% $\displaystyle \oint \vec{B} d\vec{S} = 0$ &
% $\displaystyle \vec{\nabla} \cdot \vec{B} = 0$ \\
%
% {\bf Ampere's law} &
% $\displaystyle \oint \vec{B} d\vec{\ell} = \mu_{0} \int \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big) d\vec{S}$ &
% $\displaystyle \vec{\nabla} \times \vec{B} = \mu_{0} \Big( \vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t}\Big)$ \\
% \hline
% \end{tabular}
% \end{table}
% }
% \end{center}
%
% }
% \end{frame}