-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathslides_lecture11_optional.tex
839 lines (665 loc) · 21.8 KB
/
slides_lecture11_optional.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
\begin{frame}[plain,c]
\begin{center}
{\Huge \bf Optional reading for Lecture \thislecture}
\end{center}
\end{frame}
% ------------------------------------------------------------------------------
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
\begin{blockexmplque}{Question}
A rectangular loop of wire with dimensions $\ell$ and $w$ is released at
$t=0$ from rest, just above a region in which the magnetic field is
$\vec{B}_0$, as shown in the figure below.
$\vec{B}_0$ is perpendicular to the loop of wire.
\begin{center}
\includegraphics[width=0.35\textwidth]{./images/problems/lect11_wire_loop_falling_in_b_field}
\end{center}
The loop has resistance $R$, self-inductance $L$, and mass $m$.
Consider the loop during the time that it has its upper edge
in the zero-field region.\\
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
\begin{blockexmplque}{Question (cont'd)}
\begin{itemize}
\item
Discuss the forces acting on the loop and write
Newton’s equation of motion for the loop.
\item
Find expressions for the electromotive force induced by the motion
of the loop in the magnetic field, as well as for the voltage drops
due to the resistance and self-inductance of the loop and relate
them via Kirchhoff’s voltage law.
\item
Assuming that you can ignore the self-inductance of the loop
but not the resistance,
find the current and velocity of the loop as functions of time.
\item
Assuming that you can ignore the resistance of the loop
but not the self-inductance,
find the current and velocity of the loop as functions of time.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
%
% %%% 1
%
The loop has mass $m$ and the gravitational force that
will be exerted upon would be:
\begin{equation*}
F_{g} = mg
\end{equation*}
At $t$=0, the horizontal (bottom) segment of the loop
enters the magnetic field. At $t>0$, the magnetic force exerted
upon that segment is given by:
\begin{equation*}
|\vec{F}_{B}| = | I \int_{\ell} d\vec{\ell} \times B | = B_0 \ell I
\end{equation*}
The magnetic force will point upwards and will oppose the
gravitational force with points downwards.\\
\vspace{0.2cm}
Newton's law of motion for the loop is:
\begin{equation*}
mg - B_0 \ell I = m \frac{du}{dt}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
%
% %%% 1
%
The electromotive force (EMF) that will be developed along the
horizontal (bottom) segment of the loop is:
\begin{equation*}
\varepsilon =
|\int_{\ell} (\vec{u} \times \vec{B}) \cdot d\vec{\ell}| = B_0 \ell u
\end{equation*}
The back-EMF due to the inductance L of the loop is:
\begin{equation*}
\varepsilon_{back} = V_{L} = - L \frac{dI}{dt}
\end{equation*}
The voltage drop due to the resistance R of the loop is:
\begin{equation*}
V_{R} = RI
\end{equation*}
Kirchoff's voltage law relates the directed sum of EMFs
with the sum of voltage drops along the loop
\begin{equation*}
\varepsilon + \varepsilon_{back} = V_{R} \Rightarrow
B_0 \ell u - L \frac{dI}{dt} = RI
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
%
% %%% 3
%
Assuming that $L=0$, Kirchoff's voltage law
relates $I$ and $u$ as follows:
\begin{equation*}
B_0 \ell u - \cancelto{0}{L} \;\; \frac{dI}{dt} = RI \Rightarrow
B_0 \ell u = RI \Rightarrow I = \frac{B_0 \ell}{R} u
\end{equation*}
Substituting the above expression for $I$
in Newton's law yields:
\begin{equation*}
mg - B_0 \ell \Big( \frac{B_0 \ell}{R} u \Big) = m \frac{du}{dt} \Rightarrow
\frac{du}{dt} = g - \frac{B_0^2 \ell^2}{mR} u \Rightarrow
\end{equation*}
\begin{equation*}
\frac{d(u/g)}{dt} = 1 - \frac{B_0^2 \ell^2}{mR} (u/g)
\end{equation*}
By making the following substitutions:
\begin{equation*}
C = \frac{B_0^2 \ell^2}{mR} \;\;\; and \;\;\; u^{\prime} = u/g
\end{equation*}
the previous differential equation simplifies to:
\begin{equation*}
\frac{du^{\prime}}{dt} = 1 - C u^{\prime}
\label{eq:p3c_u_diffeq2}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
Solving that differential equation:
\begin{equation*}
\frac{du^{\prime}}{1-Cu^{\prime}} = dt \Rightarrow
-\frac{1}{C} \frac{d(1-Cu^{\prime})}{1-Cu^{\prime}} = dt \Rightarrow
\end{equation*}
\begin{equation*}
\int_{u^{\prime}(t=0)=0}^{u^{\prime}(t>0)}
\frac{d(1-Cu^{\prime})}{1-Cu^{\prime}} =
-C \int_{\tau=0}^{\tau=t} d\tau \Rightarrow
\end{equation*}
\begin{equation*}
ln\Big(1-Cu^{\prime}\Big) \Bigg\rvert_{0}^{u^{\prime}(t)}
= -C \tau \Bigg\rvert_{0}^{t} \Rightarrow
\end{equation*}
\begin{equation*}
ln\Big(1-Cu^{\prime}(t)\Big) - \cancelto{0}{ln(1)} = -C t \Rightarrow
\end{equation*}
\begin{equation*}
1-Cu^{\prime}(t) = e^{-Ct} \Rightarrow
\end{equation*}
\begin{equation*}
u^{\prime}(t) = \frac{1}{C} \Big( 1-e^{-Ct} \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
Replacing $C$ and $u^\prime$ with their definitions, the above equation yields
the sought after expression for $u$ as a function of time:
\begin{equation*}
u(t)/g =
\frac{mR}{B_0^2 \ell^2} \Big( 1-e^{-\frac{B_0^2 \ell^2}{mR} t} \Big)
\Rightarrow
\end{equation*}
\begin{equation*}
u(t) =
\frac{mgR}{B_0^2 \ell^2} \Big( 1-e^{-\frac{B_0^2 \ell^2}{mR} t} \Big)
\end{equation*}
Finally, substituting the above expression for $u(t)$, in the expression
that resulted from Kirchoff's voltage law (relating $I$ and $u$), we find:
\begin{equation*}
I(t) = \frac{B_0 \ell}{R}
\frac{mgR}{B_0^2 \ell^2} \Big( 1-e^{-\frac{B_0^2 \ell^2}{mR} t} \Big)
\Rightarrow
\end{equation*}
\begin{equation*}
I(t) = \frac{mg}{B_0 \ell} \Big( 1-e^{-\frac{B_0^2 \ell^2}{mR} t} \Big)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
%
% %%% 4
%
Assuming that $R=0$, Kirchoff's voltage law
relates $I$ and $u$ as follows:
\begin{equation*}
B_0 \ell u - L \frac{dI}{dt} = \cancelto{0}{R} \;\; I \Rightarrow
B_0 \ell u = L \frac{dI}{dt} \Rightarrow
\frac{dI}{dt} = \frac{B_0 \ell}{L} u
\end{equation*}
Differentiating with respect to time
both sides of the previous expression of Newton's law of motion, yields:
\begin{equation*}
-B_0 \ell \frac{dI}{dt} = m \frac{d^2 u}{dt^2}
\end{equation*}
Combining the two expressions above, we find:
\begin{equation*}
-B_0 \ell \Big( \frac{B_0 \ell}{L} u \Big) = m \frac{d^2 u}{dt^2} \Rightarrow
-\frac{B_0^2 \ell^2}{L} u = m \frac{d^2 u}{dt^2} \Rightarrow
\end{equation*}
\begin{equation*}
\frac{d^2 u}{dt^2} + \frac{B_0^2 \ell^2}{mL} u = 0
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
Making the following substitution:
\begin{equation*}
\omega^2 = \frac{B_0^2 \ell^2}{mL}
\end{equation*}
the previous above differential equation becomes:
\begin{equation*}
\frac{d^2 u}{dt^2} + \omega^2 u = 0
\end{equation*}
This is the well-known differential equation for the harmonic oscillator
that has solutions of the form:
\begin{equation*}
u(t) = a_1 cos(\omega t) + a_2 sin(\omega t)
\end{equation*}
where $a_1$ and $a_2$ are determined from the given
boundary conditions:
\begin{equation*}
u(t=0) = 0 \;\;\; \text{and} \;\;\; I(t=0) = 0
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
The first of these boundary conditions yields:
\begin{equation*}
u(t=0) = a_1 \cancelto{1}{cos(0)} + a_2 \cancelto{0}{sin(0)} = a_1
\Rightarrow
a_1 = 0
\end{equation*}
Therefore, the general solution for $u(t)$ is reduced to:
\begin{equation*}
u(t) = a_2 sin(\omega t)
\label{eq:p3d_ut_bc1}
\end{equation*}
From the expression of Newton's law of motion at $t=0$, we find:
\begin{equation*}
mg - B_0 \ell \cancelto{0}{I(0)} \; =
m \frac{du}{dt} \Bigg\rvert_{t=0}
\end{equation*}
Substituting the above expression for $u(t)$, we have:
\begin{equation*}
\cancel{m}g =
\cancel{m} \frac{d}{dt}
\Big( a_2 sin(\omega t) \Big)\Bigg\rvert_{t=0} \Rightarrow
g = a_2 \omega cos(\omega t)\Bigg\rvert_{t=0} \Rightarrow
a_2 = \frac{g}{\omega}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
So, finally, the required expression for $u(t)$ is:
\begin{equation*}
u(t) = \frac{g}{\omega} sin(\omega t)
\end{equation*}
where $\omega$ is given by:
\begin{equation*}
\omega = \frac{B_0 \ell}{\sqrt{mL}}
\end{equation*}
To find the required expression for $I(t)$, we substitute the above
exression for $u(t)$ in Kirchoff's voltage law:
\begin{equation*}
\frac{dI}{dt} =
\frac{B_0 \ell}{L}
\Big( \frac{g}{\omega} sin(\omega t) \Big) =
\frac{B_0 \ell g}{L \omega} sin(\omega t)
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Wire loop falling in magnetic field}
Solving this differential equation:
\begin{equation*}
\int_{I(0)}^{I(t)} dI =
\frac{B_0 \ell g}{L \omega}
\int_{0}^{t} sin(\omega t^\prime) dt^\prime \Rightarrow
\end{equation*}
\begin{equation*}
I \Bigg\rvert_{I(0)}^{I(t)} =
- \frac{B_0 \ell g}{L \omega^2}
cos(\omega t^\prime) \Bigg\rvert_{0}^{t} \Rightarrow
I(t) - \cancelto{0}{I(0)} \; =
- \frac{B_0 \ell g}{L \omega^2}
\Big( cos(\omega t) - 1 \Big) \Rightarrow
\end{equation*}
\vspace{0.2cm}
we find:
\begin{equation*}
I(t) =
\frac{B_0 \ell g}{L \omega^2}
\Big( 1 - cos(\omega t) \Big)
\xRightarrow{\omega^2 = \frac{B_0^2 \ell^2}{mL}}
\end{equation*}
\begin{equation*}
I(t) =
\frac{mg}{B_0 \ell}
\Big( 1 - cos(\omega t) \Big)
\end{equation*}
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
\begin{blockexmplque}{Question}
A square loop of wire, of side $\alpha$, lies midway between
two long wires, 3$\alpha$ apart, and in the same plane.
The long wires are the sides of a large rectangular loop, but the short
ends are so far away that they can be neglected.
\begin{center}
\includegraphics[width=0.55\textwidth]{./images/problems/lect11_square_loop_between_wires_2}\\
\end{center}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
\begin{blockexmplque}{Question}
If a steady, clockwise current $I$ circulates in the large loop:
\begin{itemize}
\item
Determine an expression for the magnetic field $\vec{B}$\\
in the region of the small loop.
\item
Calculate the magnetic flux through the small loop.
\item
Find an expression for the mutual inductance $M$\\
of the system of two loops.
\end{itemize}
If, instead, a clockwise current $I$ circulates in the small loop, and\\
assuming that this current is gradually increasing
($dI/dt = k > 0$,\\ where $k$ is a constant):
\begin{itemize}
\item
Calculate the electromotive force induced in the large loop.
\item
Find the direction of the current induced in the large loop.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
% a
The magnetic field $\vec{B}_{i}$ produced by a single,
infinite straight wire $i$ with current $I_i$, is given by:
\begin{equation*}
\vec{B}_i = \frac{\mu_0 I_i}{2\pi r} \hat{\phi}
\end{equation*}
where $r$ is the distance from the wire.\\
\vspace{0.2cm}
The total magnetic field in the area of the small loop, will have contributions
from each of the long wires of the big loop.\\
\vspace{0.2cm}
The superposition principle allows
us to add these contributions due to single wires.\\
\vspace{0.2cm}
If the current $I$ in the big loop runs clockwisely,
the direction of $\vec{B}$ is into the page (towards the negative $z$ axis).\\
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
We can write the total field $\vec{B}$ in the area of the small loop as:
\begin{equation*}
\vec{B} = - \Big( \frac{\mu_0 I}{2\pi y} +
\frac{\mu_0 I}{2\pi (3\alpha-y)}
\Big) \hat{z}
= - \frac{\mu_0 I}{2\pi}
\Big( \frac{1}{y} +
\frac{1}{3\alpha-y} \Big) \hat{z}
\end{equation*}
where $y$ is the distance from the bottom wire of the large loop.\\
\vspace{0.2cm}
%b
The magnetic flux $\Phi$ through the small loop, is:
\begin{equation*}
\Phi = \int \vec{B} \cdot d\vec{S}
\end{equation*}
where $d\vec{S}$ is perpendicular to the small loop,
and will be taken to point into the page (in the negative $z$ direction),
in the same direction as $\vec{B}$.\\
\vspace{0.2cm}
Since the magnetic field $\vec{B}$ depends on $y$, but not the perpendicular
direction $x$ on the plane of the small loop, we will write the
element $d\vec{S}$ as:
\begin{equation*}
d\vec{S} = - x dy \hat{z}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
Substituting the above expressions for $\vec{B}$ and $d\vec{S}$ into the
expression for $\Phi$, we have:
\begin{equation*}
\Phi = \frac{\mu_0 I}{2\pi}
\int_{small\;loop}
\Big( \frac{1}{y} +
\frac{1}{3\alpha-y} \Big) x dy =
\frac{\mu_0 I \alpha}{2\pi}
\int_{\alpha}^{2\alpha}
\Big( \frac{1}{y} +
\frac{1}{3\alpha-x} \Big) dy
\end{equation*}
\vspace{0.3cm}
Carrying out the integration over $x$, we find:
\begin{equation*}
\Phi = \frac{\mu_0 I \alpha}{2\pi}
\int_{\alpha}^{2\alpha}
\Big( \frac{1}{y} +
\frac{1}{3\alpha-y} \Big) dy
= \frac{\mu_0 I \alpha}{2\pi}
\Big( ln(y)\Big\rvert_{\alpha}^{2\alpha} -
ln(3\alpha-y)\Big\rvert_{\alpha}^{2\alpha} \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\Phi = \frac{\mu_0 I \alpha}{2\pi}
\Big( ln(2\alpha) - ln(\alpha)
- ln(\alpha) + ln(2\alpha) \Big) \Rightarrow
\end{equation*}
\begin{equation*}
\Phi = \frac{\mu_0 I \alpha ln2}{\pi}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
% c
The mutual inductance $M$ of the system of two loops,
connects the flux in one loop with the current in the other:
\begin{equation*}
\Phi = M I
\end{equation*}
Therefore, using the expression for $\Phi$ above:
\begin{equation*}
M = \frac{\mu_0 \alpha ln2}{\pi}
\end{equation*}
\vspace{0.2cm}
% d
If a clockwise current $I$ circulates in the small loop,
the emf $\varepsilon$ induced in the big loop, is given by:
\begin{equation*}
\varepsilon = -\frac{d\Phi}{dt}
\end{equation*}
where $\Phi$ is the electric flux through that loop.
The flux $\Phi$ is given by
\begin{equation*}
\Phi = M^\prime I
\end{equation*}
where $M^\prime$ is the mutual inductance of the two loops, and
$I$ is the current on the small loop.
\end{frame}
%
%
%
\begin{frame}{Worked example: Square loop midway two parallel wires}
Previously, we calculated an expression for $M$, connecting the
flux in the small loop with a current on the big loop.
But $M^\prime = M$, so we can reuse the previous result for $M$:
\begin{equation*}
\varepsilon = -\frac{d\Phi}{dt} = -M \frac{dI}{dt} = -M k
\end{equation*}
Therefore, from the earlier expression for $\varepsilon$
in the small loop, we find:
\begin{equation*}
\varepsilon = - \frac{\mu_0 \alpha k ln2}{\pi}
\end{equation*}
% e
The net flux through the big loop, due to the current on the small loop,
is into the page (The field lines point into the page, inside the small
loop, and out of the page, outside the small loop. The big loop encloses
all of the former, but only part of the latter, hence the net flux is
into the page.\\
\vspace{0.1cm}
This flux is increasing ($dI/dt = k > 0$).\\
\vspace{0.1cm}
Therefore, the induced current in the big loop is such that its field
points out of the page: It flows counterclockwise.\\
\end{frame}
} % Worked example
% ------------------------------------------------------------------------------
%
% Worked example :
%
{
\problemslide
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
\begin{blockexmplque}{Question}
A toroid has a rectangular cross section, as shown in the figure below.
\begin{center}
\includegraphics[width=0.40\textwidth]{./images/problems/lect11_toroid}\\
\end{center}
\vspace{-0.2cm}
\begin{itemize}
\item
Show that the self-inductance is:
\begin{equation*}
L = \frac{\mu_0 N^2 h}{2\pi} ln\frac{r_2}{r_1}
\end{equation*}
where $N$ is the total number of turns and $r_1$, $r_2$ and $h$
are the dimensions shown in the figure above.
\end{itemize}
\end{blockexmplque}
\end{frame}
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
\begin{blockexmplque}{Question}
\begin{itemize}
\item
Determine the energy density in the magnetic field as a function of $r$
($r_1 < r < r_2$) and integrate this over the volume to obtain the total
energy stored in the toroid, which carries a current $I$ in each
of its $N$ loops.
\end{itemize}
\end{blockexmplque}
The self-inductance $L$ connects the magnetic flux linkage $N\Phi_B$
and the current in the toroidal coil:
\begin{equation*}
N\Phi_B = L I
\end{equation*}
Therefore:
\begin{equation*}
L = \frac{N\Phi_B}{I}
\end{equation*}
$\Phi_B$ is the magnetic flux through a single turn (out of the $N$ turns
in the coil) and it is given by:
\begin{equation*}
\Phi_B = \int_{single\;\;turn}\vec{B} \cdot d\vec{S}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
The magnetic field or the toroid can be computed from Ampere's law:
\begin{equation*}
\oint_{L} \vec{B} \cdot d\vec{\ell} = \mu_0 I_{encl}
\end{equation*}
If $L$ is a circular path with radius $r$, concentric with the toroid,
then the symmetry of the problem suggests that:
\begin{equation*}
B 2\pi r = \mu_0 I_{encl} \xRightarrow{I_{encl} = NI}
B 2\pi r = \mu_0 NI \Rightarrow
B = \frac{\mu_0 NI}{2\pi r}
\end{equation*}
The magnetic field is azimuthal and in vector form can be written as:
\begin{equation*}
\vec{B} = \frac{\mu_0 NI}{2\pi r} \hat{\phi}
\end{equation*}
Using the above expression for $B$, the flux $\Phi_B$ becomes:
\begin{equation*}
\Phi_B = \int_{single\;\;turn} \Big( \frac{\mu_0 NI}{2\pi r} \hat{\phi} \Big) \cdot d\vec{S}
= \frac{\mu_0 NI}{2\pi} \int_{single\;\;turn} \Big( \frac{1}{r} \hat{\phi} \Big) \cdot d\vec{S}
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
The surface element $d\vec{S}$ on a single turn of the toroid
can be expressed as:
\begin{equation*}
d\vec{S} = h dr \hat{\phi}
\end{equation*}
The expession for $\Phi_B$ yields:
\begin{equation*}
\Phi_B = \frac{\mu_0 NI}{2\pi} \int_{single\;\;turn} \Big( \frac{1}{r} \hat{\phi} \Big) \cdot \Big( h dr \hat{\phi} \Big)
= \frac{\mu_0 NI h}{2\pi} \int_{r_1}^{r_2} \frac{dr}{r} \Rightarrow
\end{equation*}
\begin{equation*}
\Phi_B = \frac{\mu_0 NI h}{2\pi} ln(\frac{r_2}{r_1})
\end{equation*}
Therefore, the earlier expressed for the self-inductance $L$ can be written as:
\begin{equation*}
L = \frac{N}{I} \Big( \frac{\mu_0 NI h}{2\pi} ln(\frac{r_2}{r_1}) \Big)
= \frac{\mu_0 N^2 h}{2\pi} ln(\frac{r_2}{r_1})
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
The energy density $u_B$ in the magnetic field is given by:
\begin{equation*}
u_B = \frac{1}{2\mu_0} B^2
\end{equation*}
Subsituting the expression for $B$ in the toroidal coil, we find:
\begin{equation*}
u_B = \frac{1}{2\mu_0} \Big( \frac{\mu_0 NI}{2\pi r} \Big)^2
= \frac{\mu_0 N^2 I^2}{8\pi^2 r^2}
\end{equation*}
The total energy $U_B$ stored in the magnetic field is given by:
\begin{equation*}
U_B = \int_{coil\;\;volume} u_B d\tau
\end{equation*}
Substituting the expression for $u_B$, the above yields:
\begin{equation*}
U_B = \int_{coil\;\;volume} \frac{\mu_0 N^2 I^2}{8\pi^2 r^2} d\tau
= \frac{\mu_0 N^2 I^2}{8\pi^2} \int_{coil\;\;volume} \frac{1}{r^2} d\tau
\end{equation*}
\end{frame}
%
%
%
\begin{frame}{Worked example: Toroid with rectangular cross section}
The volume element $d\tau$ within the coil, considering that the integrand
above depends only on $r$, can be written as:
\begin{equation*}
d\tau = h 2\pi r dr
\end{equation*}
Therefore:
\begin{equation*}
U_B = \frac{\mu_0 N^2 I^2}{8\pi^2} \int_{coil\;\;volume} \frac{1}{r^2} h 2\pi r dr
= \frac{\mu_0 N^2 I^2 h}{4\pi} \int_{r_1}^{r_2} \frac{dr}{r} \Rightarrow
\end{equation*}
\begin{equation*}
U_B = \frac{\mu_0 N^2 I^2 h}{4\pi} ln(\frac{r_2}{r_1})
\end{equation*}
\end{frame}
} % Worked example